Language Engineering Tools

Strategole

Martin Bravenboer

marti n@s. uu. nl

Institute of Information and Computing Sciences, University Utrecht, The Netherlands

|
Language Engineering Tools — p.1/30

Overview

Parsing and pretty-printing
parse-unit
syntax definition testing
StrategoBox
advanced pretty-printers

Applications of abstract syntax definitions
sdf2rtg and rtg2sig

rtg2typematch and wf-checker

xml-interpret
Interoperability of xml and aterm tools

Language Engineering Tools — p.2/30

parse-unit

Testing Syntax Definitions for Fun

|
Language Engineering Tools — p.3/30

Syntax Defi nition is Software Engineering

* configuration management
° build management
© version management
° deployment

® process
o extreme syntax definition

e validation and verification
© Inspection and testing

* evolution

®* metrics
|

|
Language Engineering Tools — p.4/30

Importance of Syntax Defi nition Testing

* usual arguments: deployment, build management, evolution

* conventional parsing techniques:
© definition is not a definition
° undo grammar hacking
o Implicit disambiguation

* documentation for language implementers and users

* |large, modular syntax definitions
© ambiguities not obvious
© unexpected results (e.g. embeddings)

|
Language Engineering Tools — p.5/30

Current Techniques for Syntax Defi nition Testing

1) by hand: waste of time

2) some larger inputs
* no checking of results
® poor error-reporting

= apply unit-testing techniques!

* verification of results
* excellent error reports
* documentation

|
Language Engineering Tools — p.6/30

Unit-Testing without Tool Support

from build system

1) files for input and output
® poor overview
* discourages a lot of atomic tests

2) automake tests: programs that succeed or fail
3) application from build system requires work/experience

from Stratego or shell-script:
1) escape special (?!) characters

2) no reuse for different purposes:
* documentation
* different parsing tools
* testsuite analysis, such as coverage

|
Language Engineering Tools — p.7/30

Example parse-testsuite

t estsuite Expressions
topsort EXxp

test sinple addition
"2 + 3" -> Plus(Int("2"), Int("3"))

test addition is |l eft associative
"1+ 2+ 3" ->Plus(Plus(_,),)

test for |azy people
"1 + 2 + 3" succeeds

t est
file | arge. exp succeeds

t est
"x1" fails

|
Language Engineering Tools — p.8/30

SGLR Implementation and Invocation

parse-parse-testsuite -i Exp.testsuite |
parse-unit -p Exp.tbl --verbose 1

* OK : test 1 (sinple addition)

* OK : test 2 (addition is |left associative)

* K : test 3 (for |azy people)

* K : test 4 (large.exp)

sglr: error in d O.tnp, line 1, col 2: character ‘1 (\x31l) unexpected
* K : test 5 (x1)

results testsuite Expressions
successes @ 5
failures : O

Language Engineering Tools — p.9/30

Parse-unit is the Silver Bullet

* concise overview of input and expected result
* check results at different levels of detall

®* no escaping of ‘special’ characters required

* file and inline input

* reusable for different parser implementations

* enables reasoning about testsuites

Language Engineering Tools — p.10/30

Future Work

® coverage of parse-testsuites
° rule coverage
© context-based branch coverage (work of Ralf Lammel)

* import mechanism for modular testsuites

* different parsers
° bison/glr producing aterms

* sglr specific features (attributes)
© ambiguities
© statistics

* apath based result checking
|

|
Language Engineering Tools — p.11/30

StrategoBox

Stratego Rules, also for Pretty-Printing

|
Language Engineering Tools — p.12/30

GPP: Generic Pretty Printer

* pretty-printing of parse and abstract syntax trees

* box
° text layout language

° output format independent
— abox2text, abox2html, abox2latex

® pretty-print table
© map constructor names to box templates
o applied by ast2abox
© can be generated from SDF2 syntax definition

|
Language Engineering Tools — p.13/30

Pretty-Print Table Example

Module -- VIHKW"nodule"] 1] 2],
Modul e. 2:iter-star -- 1,

Constructors -- Vis=2 [H[KW"constructors"]]
A (Il hs=1, | hs=1, | hs=1) [1]],
Constructors. l:iter-star -- 1,

OpDecl - R[1 KW":"] Hhs=1 [2]],
OpDeclInj -- R["" KW":"] Hhs=1 [1]],

Match -- H hs=0[KW"?"] 1],
Build -- Hhs=0[KW"!"] 1],

ScopeDefault -- H hs=0[KW"{"] 1 KW"}"]],

Scope -- H hs=0[KW"{"] V[H _1 KW":"]] _2] KW"}"]],
Scope. l:iter-star-sep -- Hhs=0[1 KW","]],

|
Language Engineering Tools — p.14/30

Problem

| f (bar)
{

f oo

}

el se if(bar)

{

f oo

y o

I f (bar)
f oo

el se
| f (bar)
{

f oo

R

Pretty print rule for 1F:

- V vs=0 |
H hs=0 [KW"if"] "("

2

ENW"eIse"]
3

]

1

vy

]

Language Engineering Tools — p.15/30

Pretty-Print Rules

* pretty-print table: selection of pp rules by constructor name
© no number of children
© no patterns
© no conditions
© no context

* solution: StrategoBox

°© embed box In Stratego
= meta-programming with concrete object syntax

* advantages
o pattern-matching and conditions
o strategy controls the application of pp rules

|
Language Engineering Tools — p.16/30

No Problem

Ugl yPrint :
| f(bl, b2, b3) ->
V vs=0 [
H hs=0 [KW"if"] "(" bl ")"]
b2
KW "el se"] b3
]

PrettyPrint :
| f(bl, b2, 1f(b3, b4, b5) ->
V vs=0 [

H hs=0 [KW"if"] "(" bl ")"]
b2
H hs=1 [KW"el se"] H hs=0 [KW"if"] "(" b3 ")"]]
b4
KW "el se"] b5

|
Language Engineering Tools — p.17/30

Quick Introduction: Compiling

nodul e pretty-print
| nports Box ...

pretty-print.meta

Met a([Synt ax(" Strat ego- Box")])

by hand

strc -i pretty-print.str -1 ${GPP}/share/ sdf/gpp \
-1 ${GPP}/ shar e/ gpp

using Makefile.xt
STRI NCLUDES = -1 $(GPP)/share/ sdf/gpp -1 $(GPP)/sharel/ gpp

|
Language Engineering Tools — p.18/30

Quick Introduction: Implementation

* guotation of Stratego to Box: choose
* anti-quotation of Box to Stratego: ~ or ~*

expr-to-box: Plus(el, e2) -> H hs=1 [~el "+" -~e2]
expr-to-box: Plus(el, e2) -> |[Hhs=1 [~el "+" ~e2]]|
expr-to-box: Plus(el, e2) -> box |[Hhs=1 [~el "+" ~e2]]|

j ava-t o- box:
Try(bl ock, catches, finally)
->
V vs=0 [KW"try"] ~block ~*catches KW"finally"] ~finally]

|
Language Engineering Tools — p.19/30

Quick Introduction: Implementation

expr -t o- box:
Plus(bl, b2) -> Hhs=1][bl "+" b2]

j ava-t o- box:
Try(bl, b2*, b3)
->
Vvs=0 [KW"try"] bl b2* KW"finally"] bS3]

j ava-t o- box:
SuperField(s) -> Hhs=0 [KW"super"] "." s]

More examples:
* jtree2abox in java-front/pp
* xml-doc2abox in xml-tools/pp
® pp-aterm in aterm-tools/pp

|
Language Engineering Tools — p.20/30

Future Work

* make using multiple embeddings more easy

* separate reusable parts in pp library
° block structure
° lists and separators
° Box specific traversals

* configuration of pretty-printers
* derive Box expressions from ‘example’

* applications
© pretty-print concrete object syntax fragments

|
Language Engineering Tools — p.21/30

Application of Abstract Syntax Defi nitions

Language Engineering Tools — p.22/30

Grammars as Contracts

concrete
syntax definition
source code source code

parser A X prettyprinter

abstract
syntax definition

..

|
Language Engineering Tools — p.23/30

Abstract Syntax Defi nitions in Stratego/XT

Stratego/XT: abstract syntax trees
* Stratego signature: abstract syntax definition
* generated from SDF2 concrete syntax definition

Do we use it?
* No, even format checkers are written by hand!

Why not?
* every generated signature is incorrect!
° lexical syntax, injections, aliases, renamings

®* no separate language

Solution: stratego-regular

Language Engineering Tools — p.24/30

ATerm: Tree Languages and Grammars

* tree language — subset of terms over ranked alphabet
e aterm application — fixed number of children

regul ar tree grammar
start Section
producti ons
Section -> section (Title?, {Para})
Title -> title (<string>)
Par a -> para (<string>)

regul ar tree grammar
start Exp
producti ons
Exp -> Plus (Exp, EXxp)
Exp -> Call (Var, {Exp})
Exp -> Var
Var -> Var (<string>)
|

|
Language Engineering Tools — p.25/30

XML: Hedge Languages and Grammars

* hedge — sequence of trees
e children of xml element — sequence of varying length

regul ar hedge granmar
start Section
producti ons
Section -> section (Title? Para*)
Title -> title (<string>)
Par a -> para (<string>)

regul ar hedge granmar
start Exp
producti ons
Exp -> Plus (Exp Exp)
Exp -> Call (Var Exp*)
Exp -> Var

Var -> Var (<string>)
|

|
Language Engineering Tools — p.26/30

Application: Code Generation

* sdf2rtg — generate rtg from SDF
sdf2rtg -1 Example.def -m Example

* rtg2sig — generate Stratego Signature from rtg
rtg2sig -1 Example.rtg --module Example

* rtg2typematch — generate type predicate strategies
parse-rtg|]rtg2typematch --module Example

widely used: java-front, sdf-front, stratego-shell, xml-tools

|
Language Engineering Tools — p.27/30

Application: Validation

history:
* developed fc-gen in 2002
* Stratego signature input = nobody uses it

stratego-reqgular:
* wf-checker: aterm in the language of an rhg
* no need to write a format checker by hand

* todo
° rename to format-checker
o define subsets of an rtg?
© generate code by partial evaluation?

Language Engineering Tools — p.28/30

Application: Exchange

exchange
— from xml systems invoke aterm tools
— Invoke xml tools from aterm systems

problem: differences between xml and aterm
* aterm has a more explicit structure
* aterm has pritimive data types
* aterm has structured annotations

solution: use same abstract syntax definition for xml and aterm
* rtg for aterm
* rhg for xml

|
Language Engineering Tools — p.29/30

Application: Exchange

aterm to xml
* drop explicit structure
* dataz2xml-doc | pp-xml-doc

xml to aterm
* add explicit structure
* xml-interpret --rhg Example.rhg

Interoperability
— aterm tools as xml tools using generic dataZxml-doc
«— xml tools as aterm tools using xml-interpret

|
Language Engineering Tools — p.30/30

	Overview
	parse-unit\ ~\ {�ootnotesize emph {Testing Syntax Definitions for Fun}}
	Syntax Definition is Software Engineering
	Importance of Syntax Definition Testing
	Current Techniques for Syntax Definition Testing
	Unit-Testing without Tool Support
	Example parse-testsuite
	SGLR Implementation and Invocation
	Parse-unit is the Silver Bullet
	Future Work
	StrategoBox\ ~\ {�ootnotesize emph {Stratego Rules, also for Pretty-Printing}}
	GPP: Generic Pretty Printer
	Pretty-Print Table Example
	Problem
	Pretty-Print Rules
	No Problem
	Quick Introduction: Compiling
	Quick Introduction: Implementation
	Quick Introduction: Implementation
	Future Work
	Application of Abstract Syntax Definitions
	Grammars as Contracts
	Abstract Syntax Definitions in Stratego/XT
	ATerm: Tree Languages and Grammars
	XML: Hedge Languages and Grammars
	Application: Code Generation
	Application: Validation
	Application: Exchange
	Application: Exchange

