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Declarative, Formal, and Extensible
Syntax Definition for AspectJ

A B S T R A C T

Aspect-Oriented Programming (AOP) is attracting attention from both re-
search and industry, as illustrated by the ever-growing popularity of AspectJ,
the de facto standard AOP extension of Java. From a compiler construction
perspective, AspectJ is interesting as it is a typical example of a compositional
language, i.e. a language composed of a number of separate languages with dif-
ferent syntactic styles: in addition to plain Java, AspectJ includes a language
for defining pointcuts and one for defining advices. Language composition
represents a non-trivial challenge for conventional parsing techniques. First,
combining several languages with different lexical syntax leads to consider-
able complexity in the lexical states to be processed. Second, as new language
features for AOP are being explored, many research proposals are concerned
with further extending the AspectJ language, resulting in a need for an extensible
syntax definition.

This chapter shows how scannerless parsing elegantly addresses the issues
encountered by conventional techniques when parsing AspectJ. We present
the design of a modular, extensible, and formal definition of the lexical and
context-free aspects of the AspectJ syntax in the Syntax Definition Formalism
SDF, which is implemented by a scannerless, generalized LR parser (SGLR).
We introduce grammar mixins as a novel application of SDF’s modularity fea-
tures, which allows the declarative definition of different keyword policies
and combination of extensions. We illustrate the modular extensibility of our
definition with syntax extensions taken from current research on aspect lan-
guages. Finally, benchmarks show the reasonable performance of scannerless
generalized LR parsing for this grammar.

5.1 I N T R O D U C T I O N

“A language that is used will be changed” to paraphrase Lehman’s first law of soft-
ware evolution [Lehman 1980]. Lehman’s laws of software evolution apply to
programming languages as they apply to other software systems. While the
rate of change is high in the early years of a language, even standardized lan-
guages are subject to change. The Java language alone provides good exam-
ples of a variety of language evolution scenarios. Language designers do not
get it right the first time around (e.g. enumerations and generics). Program-
ming patterns emerge that are so common that they can be supported directly
by the language (annotations, foreach, crosscutting concerns). The environ-
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ment in which the language is used changes and poses new requirements
(e.g. JSP for programming dynamic webpages). Finally, modern languages
tend to become conglomerates of languages with different styles (e.g. LINQ,
E4X, and the embedding of XML in XJ).

The risks of software evolution, such as reduced maintainability, under-
standability, and extensibility, apply to language evolution as well. While
experiments are conducted with the implementation, the actual language def-
inition diverges from the documented specification, and it becomes harder
to understand what the language is. With the growing complexity of a lan-
guage, further improvements and extensions become harder and harder to
make. These risks especially apply to language conglomerates, where in-
teractions between language components with different styles become very
complex.

AspectJ [Kiczales et al. 2001], the de facto standard aspect-oriented program-
ming language, provides a good case in point. While the official ajc com-
piler for AspectJ extends the mainstream Eclipse compiler for Java and has a
large user base, the aspect-oriented paradigm is still actively being researched;
there are many proposals for further improvements and extensions (e.g. [Ma-
suhara & Kawauchi 2003, Sakurai et al. 2004, Bodden & Stolz, Tanter et al.
2006, Allan et al. 2005, Ongkingco et al. 2006, Harbulot & Gurd 2006]). The
AspectBench Compiler abc [Avgustinov et al. 2005] provides an alternative
implementation that is geared to experimentation with and development of
new aspect-oriented language features.

AspectJ adds support to Java for modularization of crosscutting concerns,
which are specified as separate aspects. Aspects contain advice to modify the
program flow at certain points, called join points. AspectJ extends Java with
a sub-language for expressing pointcuts, i.e. predicates over the execution of a
program that determine when the aspect should apply, and advices, i.e. method
bodies implementing the action that the aspect should undertake. The point-
cut language has a syntax that is quite different from the base language. This
complicates the parsing of AspectJ, since its lexical syntax is context-sensitive.
This is a problem for scanners, which are oblivious to context. The parsers of
the ajc and abc compilers choose different solutions for these problems. The
abc parser uses a stateful scanner [Hendren et al. 2004], while the ajc compiler
uses a handwritten parser for parsing pointcut expressions. For both parsers
the result is an operational, rather than declarative, implementation of the As-
pectJ syntax, in particular the lexical syntax, for which the correctness and
completeness are hard to verify, and that is difficult to modify and extend.

In this chapter, we present a declarative, formal, and extensible syntax def-
inition of AspectJ. The syntax definition is formal and declarative in the sense that
all aspects of the language are defined by means of grammar rules. The syn-
tax definition is modular and extensible in the sense that the definition consists
of a series of modules that define the syntax of the ‘component’ languages
separately. AspectJ is defined as an extension to a syntax definition of Java 5,
which can and has been further extended with experimental aspect features.

We proceed as follows. First we give brief introductions to concepts of
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parsing (Section 5.2) and aspect-oriented programming (Section 5.3). To ex-
plain the contribution of our approach we examine in Section 5.4 the issues
that must be addressed in a parser for AspectJ and discuss how the parser
implementations of ajc (Section 5.5) and abc (Section 5.6), two state-of-the-art
compilers for AspectJ, solve these issues. In Section 5.8 we present the design
of a syntax definition for AspectJ that defines its lexical as well as context-free
syntax, overcoming these issues. Our AspectJ syntax definition is based on
the syntax definition formalism SDF2 [Visser 1997b] and its implementation
with scannerless generalized LR parsing (SGLR) [Visser 1997a, van den Brand
et al. 2002]. The combination of scannerless [Salomon & Cormack 1989, Sa-
lomon & Cormack 1995] and generalized LR [Tomita 1985] parsing supports
the full class of context-free grammars and integrates the scanner and parser.
Due to these foundations, the definition elegantly deals with the extension
and embedding of the Java language, the problems of context-sensitive lexical
syntax, and the different keyword policies of ajc and abc. For the latter we
introduce grammar mixins, a novel application of SDF’s modularity features.

In Section 5.9 we examine the extensibility of ajc and abc and we show
how grammar mixins can be used to create and combine extensions of the
declarative syntax definition. In Section 5.10 we discuss the performance of
our implementation. While LALR parsing with a separate scanner is guar-
anteed to be linear in the length of the input, the theoretical complexity of
generalized LR parsing depends on the grammar [Rekers 1992]. However,
obtaining a LALR grammar is often a non-trivial task and context-sensitive
lexical syntax further complicates matters. The benchmark compares the per-
formance of the parser generated from our syntax definition to ajc, abc, and
ANTLR. We conclude with a discussion of previous, related, and future work.
In particular, we analyze why SGLR is not yet in widespread use, and discuss
research issues to be addressed to change this.

The contributions of this chapter are:

• An in-depth analysis of the intricacies of parsing AspectJ and how this
is achieved in mainstream compilers, compromising extensibility;

• A declarative and formal definition of the context-free and lexical syntax
of AspectJ;

• A modular formalization of keyword policies as applied by the ajc and
abc AspectJ compilers;

• An account of the application of scannerless parsing to elegantly deal
with context-sensitive lexical syntax;

• A demonstration of the extensibility of our AspectJ syntax definition;

• A mixin-like mechanism for combining syntactic extensions and instan-
tiating sub-languages for use in different contexts;

• A case study showing the applicability of scannerless generalized LR
parsing to complex programming languages.
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Figure 5.1 Simplified parse tree for a Java statement

Availability The AspectJ syntax definition and parser are available as part of
AspectJ-front, which is open source (LGPL) and available at http://aspectj.

syntax-definition.org.

5.2 S C A N N I N G A N D PA R S I N G

In this section we review the basic concepts of the conventional parser archi-
tecture using a separate scanner for tokenization and compare it to scannerless
parsing, in which the parser reads characters directly. A parser transforms a
list of characters (the program text) into a structured representation (a parse
tree). For example, Figure 5.1 shows a (simplified) parse tree for the Java
statement if (chars[count] == ’\n’) line++;. Parse trees are a better rep-
resentation for language processing tools such as compilers than plain text
strings.

5.2.1 Tokenization or Scanning

Conventional parsers divide the work between the proper parser, which rec-
ognizes the tree structure in a text, and a tokenizer or scanner, which divides
the list of characters that make up the program text into a list of tokens. For
example, the Java statement

if (chars[count] == ’\n’) line++;

is divided into tokens as follows

if  ( chars [ count ]  ==  ’\n’ )  line ++ ;

Figure 5.2 illustrates the collaboration between scanner and parser. The parser
building a parse tree requests tokens from the scanner, which reads characters
from the input string.
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Figure 5.2 A scanner-based parser uses a scanner to partition the input string into
tokens, which become the leafs of parse trees.

The reason for the division is the use of different techniques for the im-
plementation of tokenization and parsing. Tokens can be recognized using a
deterministic finite automaton (DFA), while parsers for recursive structures
need a pushdown automaton, i.e. a stack. Furthermore, tokenization reduces
the number of items the parser has to consider; long sequences of charac-
ters are reduced to a single token, and whitespace and comments are usually
ignored by the parser.

5.2.2 Scanner and Parser Generators

Scanners and parsers can be generated from formal definitions of the lexical
and context-free syntax of a language. Scanners are generated from regular
expressions describing the tokens of the language and parsers are generated
from context-free grammars (BNF). Conventional parser generators such as
YACC, Bison, and CUP accept only a restricted class of context-free grammars
such as LL, LR, or LALR. The advantage is that the complexity of parsers for
such grammars is linear in the size of the input. Furthermore, grammars
in these classes are not ambiguous; only one interpretation for any string is
possible. The fact that a grammar does not belong in a certain class shows
up as conflicts in the parse table. For example, in the case of LR parsing,
shift-reduce and reduce-reduce conflicts indicate that the parser cannot make
a decision about how to proceed based on the provided lookahead informa-
tion. Solving such conflicts requires rewriting the grammar and sometimes
changing the syntax of the language. Also, restricted classes of context-free
grammars are not closed under composition.
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5.2.3 Lexical Context

The uniform tokenization of the input string by means of regular expressions
can be problematic, since the scanner does not consider the context in which
a token occurs. This means that a particular sequence of characters is inter-
preted as the same token everywhere in the program text. For syntactically
simple languages that have been designed with this restriction in mind this
is not a problem. However, modern languages tend to become combinations
of ‘domain-specific’ languages, each providing syntax appropriate for its do-
main. Because of the limitations of the ascii character set, the same characters
may play different roles in these languages.

One solution that is employed is the use of lexical state; the scanner operates
in different modes depending on the context. This requires state switching
when entering and leaving a context, and may require interaction between
the scanner and the parser.

5.2.4 Programmatic Parsers

Another solution to bypass the restrictions posed by scanner and parser gen-
erators is the use of programmatic ‘handwritten’ parsers, usually according
to the recursive descent (topdown parsing) approach. The advantage is that it
is easy to escape the rigor of the parsing algorithm and customize it where
necessary. Possible customizations are to drive tokenization from the parser
to deal with lexical context or to provide customized error handling. A disad-
vantage of programmatic parsers is that a parser does not provide a declara-
tive specification of the language; conversely, a formal grammar can serve as
both documentation and implementation. Also, parser implementations are
usually much larger in terms of lines of code, with all the implications for
maintainability.

5.2.5 Scannerless Generalized LR Parsing

A scannerless parser does not make use of a separate scanner to tokenize the
input [Salomon & Cormack 1995]; the parser directly reads the characters of
the input string. Instead of a separate specification of lexical and context-free
syntax as is customary in scanner-based parsing, a single grammar is used
that defines all aspects of the language. Although there is no conceptual dif-
ference with scanner-based parsing, scannerless parsing is not in common
use because it does not work with conventional parser generators. A gram-
mar that describes the lexical as well as the context-free syntax of a language
does not usually fit in the grammar classes supported by parser generators.
The problem is that these algorithms need to make a decision on the first
(few) token(s) in the input. In the case of scannerless parsing a decision may
only be made after reading an unbounded number of characters. This prob-
lem is solved by the use of Generalized LR (GLR) parsing. GLR parsers use a
parse table generated by a normal LR parser table generator, e.g. LALR(1)
or SLR(1). At points in the input where the parser encounters a shift-reduce
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or reduce-reduce conflict, there are multiple possible continuations. In that
case a GLR parser simulates the execution of all possible LR parses in paral-
lel. Scannerless GLR (SGLR) parsing adds a few disambiguation techniques
to GLR parsing to make it suitable for scannerless parsing [Visser 1997a, Vis-
ser 1997b, van den Brand et al. 2002]. Follow restrictions define longest match
disambiguation and reject productions express reserved word policies.

An advantage of SGLR parsing is that it deals naturally with the problem of
lexical context. Rather than parsing a lexical entity in isolation, as is done with
regular expressions, the parsing context acts naturally as lexical state. Thus,
the same sequence of characters can be interpreted differently in different
parts of a program.

In the following sections we closely examine the differences between scanner-
based and scannerless parsing, by studying state-of-the-art implementations
of parsers for AspectJ. In Section 5.4 we analyze the properties of the parsers
of the ajc and abc compilers for AspectJ. In Section 5.8 we discuss a syntax
definition for AspectJ using the declarative syntax definition formalism SDF2.

5.3 A Q U I C K I N T R O D U C T I O N T O A S P E C T J

To understand the examples and issues we discuss in this chapter, it is impor-
tant to be somewhat familiar with the syntactic structure of an AspectJ program.
This section briefly discusses the various constructs of AspectJ. (In this chap-
ter we focus on the pointcut-advice mechanism of AspectJ.) Knowledge of
their semantics is not necessary. For a more extensive account of the AspectJ
language we refer to [AspectJ].

Figure 5.3 shows an AspectJ aspect for caching executions of the calc

method of Fibonacci objects. It shows the concise syntax for defining point-
cuts, an around advice, and how this is mixed with normal Java code (AspectJ
keywords are in emphasized bold).

Aspect Declarations

Aspects can be declared, similar to Java classes, either as top-level entities
or nested in Java classes 8. An aspect declaration consists of a number of
pointcut declarations and advices, as well as standard Java members (e.g. the
cache field 9).

Pointcuts

A pointcut is the specification of a pattern of join points of interest to a given
aspect. Join points here are events in the dynamic execution of a program,
e.g. a method call or an access to an object field. As such, the pointcut lan-
guage of AspectJ is really a separate domain-specific language for identifying join
points.

A pointcut is specified using a number of pointcut designators. Primitive
pointcut designators refer to different kinds of operations in the execution
of a program. For instance, execution refers to the execution of a method 11

— which method(s) is specified by giving a method pattern as explained below.
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public aspect Caching { 8

private Map<Integer, Integer> cache = 9

new HashMap<Integer, Integer>();

pointcut cached(int value): 10

execution(* Fib.calc(int)) && args(value); 11

int around(int value): cached(value) { 12

if(cache.containsKey(value)) {
return cache.get(value);

}
else {

int result = proceed(value); 13

cache.put(value, result);
return result;

}
}

}

Figure 5.3 A sample caching aspect in AspectJ

Furthermore, some pointcut designators are used either to further restrict a
pointcut, or to bind some values to pointcut formal parameters. In Figure 5.3,
the pointcut is given a name (a named pointcut) and exposes one parameter of
type int 10, which is bound via the args pointcut designator to the value of
the argument to calc method executions 11.

Advice

Advice are pieces of code to execute when an associated pointcut matches.
This piece of code, which is similar to a Java method body, can be executed
before, after, or around the intercepted join point based on the advice kind. Since
the caching aspect may actually replace the execution of calc, it is declared
to be of the around kind 12. As a consequence, its return type (int) must be
specified. The caching advice is associated to the cached named pointcut, and it is
parameterized by the value of the argument to calc. Within an around advice
body, calling proceed results in the intercepted join point to be executed 13.

Patterns

Fundamental to the pointcut language of AspectJ are patterns. A name pattern is
used to denote names (method names, field names, type names) in a declara-
tive fashion, using wildcards such as * and ?. A type pattern is used to denote
types, e.g. int matches the primitive type int, while A+ matches object type A

and all its subtypes (+). A method pattern as in the execution pointcut designator
in 11 identifies matching method signatures: a return type pattern (* in 11), a
declaring type pattern (Fib in 11), a name pattern (calc in 11), and then type
patterns for the parameters (int in 11).
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5.4 I S S U E S I N PA R S I N G A S P E C T J

In this section we give an overview of some of the challenges of parsing As-
pectJ. The overview is based on an analysis of the AspectJ language and a
review of the source of the scanner and parser of the two major AspectJ im-
plementations: the official AspectJ compiler ajc, and the abc compiler from
the AspectBench Compiler project [Avgustinov et al. 2005]. The scanner and
the parser of abc have partially been documented in [Hendren et al. 2004].
The purpose of this overview is to show that the parsers of the major imple-
mentations of AspectJ are not based on a declarative and complete definition
of the language, which leads to minor differences between the two compilers
and a lack of clarity about the exact language that each recognizes, as well as
parsers that are not easy to maintain and extend.

The main source of the issues in parsing AspectJ is the difference between
the lexical syntax of different parts of an AspectJ source file. Conventionally,
parsers use a separate scanner (or lexer) for lexical analysis that breaks up the
input character stream into a list of tokens, such as identifiers, literals, layout,
and specific keywords such as class, public, and try. Usually this tokeniza-
tion is applied uniformly to the text of a program, so at every offset in the
input, all the same tokens of the language can be recognized by the scanner.
However, this does not apply to AspectJ, which is in fact more like a mix-
ture of three languages. Regular Java code, aspect declarations, and pointcut
expressions each have a different lexical syntax.

For example, in Java, get* is an identifier followed by a multiplication
operator, while in a pointcut expression it represents an identifier pattern that
matches any identifier with prefix get. In the first case, the scanner should
produce the tokens get *, while in the second case a single token get* would
be expected. Similarly, the + in the pointcut call(Foo+.new()) is not an addi-
tion operator, but a subtype pattern that matches any subclass of Foo. To com-
plicate matters, Java code can also occur within a pointcut definition. For
instance, the if(...) pointcut designator takes as an argument a plain Java
expression.

The languages involved in AspectJ also have different keywords. Depending
on the AspectJ implementation, these keywords might be reserved or not. For
ajc, most keywords are not reserved, since at most places they are explicitly
allowed as identifiers in the grammar. For example, aspect is a keyword, but
it is allowed as the name of a local variable. Similarly, around is not allowed
as the name of a method in an aspect declaration, but it is in regular Java
code. On the other hand, around is allowed as the name of a local variable
in regular Java as well as in aspect declarations. The abc compiler uses a
different keyword policy. For example, before is a keyword in the context of an
aspect declaration, but is an identifier in Java code and in pointcut expressions.
In both compilers, pointcut expression keywords, such as execution and get,
are allowed as elements of a pointcut name pattern, e.g. Foo.execution is a
valid name pattern, and so is get*.

Hence, an AspectJ compiler needs to consider the context of a sequence of
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characters to decide what kind of token they represent. Next, we discuss in
detail how abc and ajc parse AspectJ.

5.5 T H E A J C S C A N N E R A N D PA R S E R

The official AspectJ compiler1, ajc, extends the Eclipse compiler for Java,
which is developed as part of the Eclipse Java Development Tools (JDT) [JDT
Website]. The parser of ajc roughly consists of three components:

1. The scanner of ajc is a small extension of the regular Java scanner of the
JDT. The JDT scanner and the extension in ajc are both written by hand.
The scanner extension does nothing more than adding some keywords
to the scanner.

2. The parser of ajc is generated from a grammar using the Jikes parser
generator (these days also known as LPG, LALR Parser Generator). The
grammar is a modified version of the JDT grammar for regular Java. It
does not actually define the syntax of pointcut expressions: these are
only scanned and parsed separately.

The handwritten part of the JDT parser for constructing ASTs is ex-
tended as well. The original Java code has to be modified at some places,
mostly for making the parser more flexible and extensible by introduc-
ing factory methods. Presumably, this could be merged with the JDT
parser itself.

3. A handwritten recursive descent pattern parser is invoked to parse the
pointcut expressions of AspectJ after the source file has been scanned
and parsed by the previous components. Except for the if pointcut
designator, the pattern parser works directly on the result of the ajc

scanner, since the ajc parser parses pointcuts as a list of tokens.

5.5.1 Parsing Pointcuts

The most interesting part of the ajc parser is the handling of pointcuts.

Scanner

The ajc scanner is applied uniformly to the input program, which means that
the same set of tokens is allowed at all offsets in the input. Note that the ajc

scanner does not add tokens to the JDT scanner, except for some keywords, so
the pointcuts are tokenized as any other part of the source file. For example,
the pointcut of the caching aspect in Figure 5.3 is scanned to the following list
of tokens:

execution ( * Fib . calc ( int ) ) && args ( value )

This sequence of tokens is a correct tokenization of this pointcut, but our
previous example of the simple name pattern get* is actually not scanned

1Our study is based on ajc version 1.5.0.
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as the single token get*, but as the tokenization you would expect in the
context of a regular Java expression: an identifier followed by a multiplication
operator, i.e. the scanner produces the tokenization get *.

Still, this does not look very harmful, but actually scanning pointcuts and
Java code uniformly can lead to very strange tokenizations. For example,
consider the (somewhat artificial) pointcut call(* *1.Function+.apply(..)).
For this pointcut the correct tokenization according to the lexical syntax of
pointcuts is:

call ( * *1 . Function + . apply ( .. ) )

However, the ajc scanner produces the following list of tokens for this point-
cut:

call ( * * 1.F unction + . apply ( . . ) )

Perhaps surprisingly, Function has been split up and the F is now part of
the token 1.F, which is a floating-point literal where the F is a floating-point
suffix. Of course, a floating-point literal is not allowed at all in this context
in the source file. As we will show later, the pattern parser needs to work
around this incorrect tokenization.

Unfortunately, things can get even worse. Although rather uncommon, the
first alpha-numerical character after the * in a simple name pattern can be a
number (in fact, this is also the case in the previous floating-point example).
The token that starts after the * will always be scanned as a number by the JDT
scanner, and the same will happen in the ajc scanner. The JDT scanner checks
the structure of integer and floating-point literals by hand and immediately
stops parsing if it finds a token that should be a floating-point or integer literal
according to the Java lexical syntax, but is invalid because certain parts of the
literal are missing. This can result in error messages about invalid literals,
while in this context there can never actually be a literal.

For example, scanning the pointcut call(void *0.Ef()) reports an “Invalid
float literal number” because the scanner wants to recognize 0.E as floating-point
literal, but the actual exponent number is missing after the exponent indica-
tor E. As another example, scanning the pointcut call(void Foo.*0X()) fails
with the error message “Invalid hex literal number”, since 0X indicates the start
of a hexadecimal floating-point or integer literal, but the actual numeral is
missing.

Parser

The ajc parser operates on the sequence of tokens provided by the scanner.
Unfortunately, for pointcuts the parser cannot do anything useful with this
tokenization, since it is not even close to the real lexical syntax of pointcuts
in many cases. In a handwritten parser it might be possible to work around
the incorrect tokenization, but the ajc parser is generated from a grammar
using the Jikes parser generator. In a grammar workarounds for incorrect
tokenizations are possible as well (as we will see later for parameterized types)
but for pointcuts this would be extraordinarily difficult, if not impossible.
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PointcutDeclaration ::=
PcHeader FormalParamListopt ’)’ ’:’ PseudoTokens ’;’

DeclareDeclaration ::=
DeclareAnnoHeader PseudoTokensNoColon ’:’ Anno ’;’

PseudoToken ::=
’(’ | ’)’ | ’.’ | ’*’ | Literal | ’new’
| JavaIdentifier | ’if’ ’(’ Expression ’)’ | ...

ColonPseudoToken ::= ’:’

PseudoTokens ::=
one or more PseudoToken or ColonPseudoToken

PseudoTokensNoColon ::=
one or more PseudoToken

Figure 5.4 Pseudo tokens in the ajc grammar for AspectJ

For these reasons, the parser processes pointcuts just as a list of tokens
called pseudo tokens that are parsed separately by the handwritten pattern parser.
In this way, the main parser basically just skips pointcuts and forwards the
output of the scanner (with a twist for the if pointcut) to the pattern parser. It
is essential that the parser can find the end of the pointcut without parsing the
pointcut. Fortunately, this is more or less the case in AspectJ, since pointcuts
cannot contain semicolons, colons, and curly braces, except for the expression
argument of the if pointcut designator, which we will discuss later.

The handling of pointcuts using pseudo tokens is illustrated in Figure 5.4:
the first production defines pointcut declarations, where the pointcut, recog-
nized as a sequence of pseudo tokens, starts after the colon and is terminated
by the semicolon. The second production for inter-type annotation declara-
tions uses a somewhat smaller set of pseudo tokens, since it is terminated by a
colon instead of a semicolon. Most of the Java tokens, except for curly braces,
semicolons, and colons, but including keywords, literals, etc., are defined to
be pseudo tokens.

The if pointcut designator is a special case, since it takes a Java expression
as an argument. Of course, the pattern parser should not reimplement the
parsing of Java expressions. Also, Java expressions could break the assump-
tion that pointcuts do not contain colons, semicolons, and curly braces. For
these reasons, the if pointcut designator is parsed by ajc parser as a special
kind of pseudo token, where the expression argument is not a list of tokens,
but a real expression node (see Figure 5.4).

Interestingly, this special pseudo token for the if pointcut designator re-
serves the if keyword in pointcuts, while all other Java keywords are allowed
in name patterns. Hence, the method pattern boolean *.if*(..) is not al-
lowed in ajc 2.

2This turned out to be a known problem, see bug 61535 in ajc’s Bugzilla: https://bugs.

eclipse.org/bugs/show_bug.cgi?id=61535, which has been opened in May 2004.
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Pattern Parser

Finally, the handwritten pattern parser is applied to pointcuts, which have
been parsed as a sequence of pseudo tokens by the parser. The pattern parser
takes a fair amount of code, since the pointcut language of AspectJ is quite
rich. Most of the code for parsing pointcuts is rather straightforward, though
cumbersome to implement by hand. The most complex code handles the
parsing of name patterns. Since the tokenization performed by the ajc scan-
ner is not correct, the pattern parser cannot just consume the tokens. Instead,
it needs to consider all the possible cases of incorrect tokenizations. For ex-
ample, the pointcuts call(* *1.foo(..)) and call(* *1.f oo(..)) are both
tokenized in the same way by the ajc scanner:

call ( * * 1.f oo ( . . ) ) ;

However, the token sequences for these two pointcuts cannot be handled in
the same way, since the second one is incorrect, so a parse error needs to be
reported. Therefore, the pattern parser checks if tokens are adjacent or not:

while(true) {
tok = tokenSource.peek();
if(previous != null) {
if(!isAdjacent(previous, tok))
break;

}
...

}

The need for this adjacency check follows naturally from the fact that the
pattern parser has to redo the scanning at some parts of the pointcut and a
single AspectJ pointcut token can span multiple Java tokens, in particular in
name patterns.

The special if pseudo tokens do not have to be parsed anymore. For this
purpose, the IToken interface, of which PseudoToken and IfPseudoToken are
implementations, is extended with a method maybeGetParsedPointcut that imme-
diately returns the pointcut object. This method is invoked from the pattern
parser:

public Pointcut parseSinglePointcut() {
IToken t = tokenSource.peek();
Pointcut p = t.maybeGetParsedPointcut();
if(p != null) {

tokenSource.next();
return p;

}
String kind = parseIdentifier();
... // continue parsing the pointcut

}

5.5.2 Parameterized Types

Incorrect tokenization problems are not unique to AspectJ. Even in regular
Java 5, a parser that applies a scanner uniformly to an input program has to
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TypeArgs ::= ’<’ TypeArgList1

TypeArgList -> TypeArg
TypeArgList ::= TypeArgList ’,’ TypeArg
TypeArgList1 -> TypeArg1
TypeArgList1 ::= TypeArgList ’,’ TypeArg1
TypeArgList2 -> TypeArg2
TypeArgList2 ::= TypeArgList ’,’ TypeArg2
TypeArgList3 -> TypeArg3
TypeArgList3 ::= TypeArgList ’,’ TypeArg3

TypeArg ::= RefType
TypeArg1 -> RefType1
TypeArg2 -> RefType2
TypeArg3 -> RefType3

RefType1 ::= RefType ’>’
RefType1 ::= ClassOrInterface ’<’ TypeArgList2
RefType2 ::= RefType ’>>’
RefType2 ::= ClassOrInterface ’<’ TypeArgList3
RefType3 ::= RefType ’>>>’

Figure 5.5 Production rules for parameterized types in the ajc grammar, working
around incorrect tokenizations of parameterized types

deal with incorrect tokenizations, namely of parameterized types. For exam-
ple, the parameterized type List<List<List<String>>> is tokenized by the ajc

scanner as:

List < List < List < String >>>

where >>> is the unsigned right shift operator 3. Because of this, the grammar
cannot just define type arguments as a list of comma-separated types between
’<’ and ’>’, since in some cases the final > will not actually be a separate
token.

This tokenization problem has to be dealt with in two places: in the ajc

grammar and in the handwritten pattern parser. For the ajc grammar, Fig-
ure 5.5 shows the production rules for type arguments. Clearly, this is much
more involved than it should be 4. For the pattern parser, incorrect tokeniza-
tions of >> and >>> are fixed by splitting the tokens during parsing when the
expected token is a single >. Figure 5.6 show the code for this. The eat method
is used in the pattern parser to check if the next token is equal to a specified,
expected token. If a shift operator is encountered, but a > is expected, then
the token is split and the remainder of the token is stored in the variable
pendingRightArrows, since the remainder is now the next token.

5.5.3 Pseudo Keywords

For compatibility with existing Java code, ajc does not reserve all the key-
words introduced by AspectJ. Yet, the scanner of ajc does add keywords to the

3In C++ this is not allowed: a space is required between the angle brackets.
4This workaround is documented in the GJ specification [Bracha et al. 1998].
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private void eat(String expected) {
IToken next = nextToken();
if(next.getString() != expectedValue) {
if(expected.equals(">") && next.getString().startsWith(">")) {

pendingRightArrows = substring from 1 of next;
return;

}
throw parse error

}
}

private IToken pendingRightArrows;
private IToken nextToken() {
if(pendingRightArrows != null) {

IToken ret = pendingRightArrows;
pendingRightArrows = null;
return ret;

}
else {
return tokenSource.next();

}
}

Figure 5.6 Splitting shift operators in the ajc pattern parser to work around incor-
rect tokenizations of parameterized types

lexical syntax of Java (aspect, pointcut, privileged, before, after, around, and
declare), which usually implies that these keywords cannot be used as iden-
tifiers since the scanner will report these tokens as keywords. However, in its
grammar, ajc introduces JavaIdentifier, a new non-terminal for identifiers,
for which these keywords are explicitly allowed:

JavaIdentifier -> ’Identifier’
JavaIdentifier -> AjSimpleName

AjSimpleName -> ’around’
AjSimpleName -> AjSimpleNameNoAround
AjSimpleNameNoAround -> ’aspect’ or ’privileged’ or

’pointcut’ or ’before’ or ’after’ or ’declare’

This extended identifier replaces the original Identifier, which can no longer
be one of the AspectJ keywords, at most places in the grammar. For example,
the following productions allow the AspectJ keywords as the name of a class,
method, local variable, and field.
ClassHeaderName1 ::= Modifiersopt ’class’ JavaIdentifier
MethodHeaderName ::= Modifiersopt Type JavaIdentifier ’(’
VariableDeclaratorId ::= JavaIdentifier Dimsopt

However, the extended identifier is not allowed everywhere. In particular,
it cannot be the first identifier of a type name, which means that it is not
allowed as a simple type name, and cannot be the first identifier of a qualified
type name, which could refer to a top-level package or an enclosing class. For
example, the first import declaration is not allowed, but the second one is 5:

5This is related to ajc bug 37069 at https://bugs.eclipse.org/bugs/show_bug.cgi?id=

37069
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import privileged.*;
import org.privileged.*;

If keywords would be allowed as simple type names, the grammar would
no longer be LALR(1). The keywords as type names introduce shift-reduce
and reduce-reduce conflicts. Hence, a qualified name is defined to be an
Identifier, followed by one or more JavaIdentifiers:

ClassOrInterface ::= Name
SingleTypeImportDeclarationName ::= ’import’ Name
Name -> SimpleName or QualifiedName
SimpleName -> ’Identifier’
QualifiedName ::= Name ’.’ JavaIdentifier

Pointcuts

The names of the primitive AspectJ pointcut designators, such as get, set,
call, etc., are not declared as keywords. The scanner does not have any
knowledge about pointcuts, so the names are parsed as identifiers, unless
the pointcut designator was already a keyword, such as if. As we have seen
earlier, the name if is still accidentally a reserved keyword, but the names
of the other pointcut designators are not, so they can be used in pointcut ex-
pressions, for example in name patterns. However, a named pointcut with
the same name as a primitive pointcut designator cannot be used (though
surprisingly, it can be declared without warnings).

Around Advice Declarations

Around advice declarations introduce another complication. Whereas after
and before advice declarations immediately start with the keywords after or
before, around advice declarations start with a declaration of the return type.
This introduces a shift-reduce conflict between an around advice declaration
and a method declaration. For this reason, ajc does not allow methods named
around in aspect declarations. Of course, it would not be acceptable to disallow
the name around for all methods, including the ones in regular Java classes, so
this restriction should only apply to aspect declarations (advice cannot occur
in class declarations). Therefore, the ajc grammar needs to duplicate all the
productions (19) from an aspect declaration down to a method declaration,
where finally the name of a method is restricted to a JavaIdNoAround:
JavaIdNoAround -> ’Identifier’
JavaIdNoAround -> AjSimpleNameNoAround
MethodHeaderNameNoAround ::=
Modifiersopt TypeParameters Type JavaIdNoAround ’(’

5.6 T H E A B C S C A N N E R A N D PA R S E R

The parser of abc6 is based on Polyglot [Nystrom et al. 2003], which provides
PPG, a parser generator for extensible grammars based on the LALR CUP
parser generator. PPG acts as a front-end for CUP, by adding some exten-
sibility and modularity features, which we will discuss later in Section 5.9.

6Our study is based on abc version 1.1.0, which supports ajc 1.2.1 with some minor differences

108



Java

AspectJ

PointcutPointcut If

class
aspect,class

[;{)]

pointcut

[;{)]

per*,pointcut,after

if

[)]

class

class aspect

Figure 5.7 Lexical state transitions in the abc scanner

Polyglot’s scanner for Java is implemented using the JFlex scanner generator.
Polyglot does not feature an extensible scanner, so the abc compiler imple-
ments its own scanner for AspectJ, which takes an approach radically differ-
ent from ajc. The abc scanner and parser can parse the entire source file in
a single continuous parse. So, the Java, aspect, and pointcut language are
defined in a single JFlex specification and CUP grammar. The abc scanner is
designed to immediately produce the correct tokenization, so there is no need
to fix incorrect tokenizations later. Also, the scanner does not interact with
the parser.

5.6.1 Managing Lexical State

The abc scanner performs a rudimentary form of context-free parsing to rec-
ognize the global structure of the source file while scanning. The scanner
keeps track of the current state (or context), by using a set of state transition
rules that have been determined by a detailed analysis of the possible state
switches in AspectJ. The lexical states and the transitions between them are
illustrated in Figure 5.7. Some transitions have additional conditions, which
we will explain later. Maintaining lexical state is not uncommon. It is widely
used for scanning string literals and it is a standard feature of JFlex. Every
lexical state has its own set of lexical rules, which means that a sequence of
characters can be scanned as a different token in different states.

Pointcut Declarations

A simple example of such a state transition rule, is that a pointcut state is
entered after the pointcut keyword and exited after a ";" in pointcut context.
For this example, the pointcut keyword and the semicolon indicates the start
and end of a pointcut declaration, respectively. The exit of the pointcut state
after a pointcut declaration is implemented in the flex specification by return-
ing to the previous state (which is maintained on a stack) whenever the ";"

token is encountered in the pointcut state (POINTCUT):

<POINTCUT> {
";" {
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returnToPrevState();
return op(sym.SEMICOLON);

}
}

For reasons of extensibility, keywords and their corresponding actions for en-
tering lexical states are not specified in the flex specification, but are initialized
from the Java code by means of a Java interface LexerAction whose instances
can be registered with the scanner. LexerActions are always attached to key-
words and can change the lexical state when the keyword has been scanned.
For example, the following Java statement adds the keyword pointcut, which
starts the pointcut declaration, to the scanner and specifies that the new lexical
state after this keyword is pointcut.

lexer.addAspectJKeyword("pointcut",
new LexerAction_c(new Integer(sym.POINTCUT),
new Integer(lexer.pointcut_state())));

In this way, keywords are registered per lexical state in a HashMap. Initially, key-
words are always scanned as identifiers and depending on the current lexical
state, the identifier is turned into a keyword by a lexer action. As a side ef-
fect, the lexer action can modify the lexical state of the scanner. Figure 5.8
shows a fragment of the Java class LexerAction c and the invocation of the
lexer actions from the flex specification after an Identifier has been scanned.
Note that keywords are automatically reserved in this way, since the identifier
is always be turned in a keyword if there is a lexer action for it. Note that this
design choice for reserved keywords is different from the pseudo keyword
policy used by ajc.

If Pointcut Designator

The pointcut lexer action and the lexical rule for ; look rather concise, but un-
fortunately, most rules are more complex than this. For instance, the if(..)

pointcut designator takes a Java expression as argument, which has the same
lexical syntax as Java code in Java context, so the lexical state should be
changed for the argument of the if(..). Entering the lexical state is not
very difficult: a lexer action for the if keyword can perform this state transi-
tion. The following Java statement adds the pointcut keyword if to the scan-
ner and specifies that the new lexical state after this keyword is the special
POINTCUTIFEXPR state:

lexer.addPointcutKeyword("if",
new LexerAction_c(new Integer(sym.PC_IF),
new Integer(lexer.pointcutifexpr_state())));

However, for recognizing the end of the if(..) pointcut designator, the scan-
ner needs to find the closing parenthesis. Of course, a Java expression can
contain parentheses as well. It would be incorrect to leave the special lex-
ical state at the first closing parenthesis. Thus, the scanner needs to find
the closing parenthesis that corresponds to the opening parenthesis after the
if. For this purpose, the abc scanner maintains a variable parenLevel that is
used to balance the parentheses. If a ")" is encountered, the parenLevel is
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<YYINITIAL,ASPECTJ,POINTCUTIFEXPR,POINTCUT> {
{Identifier} {

LexerAction la;
switch(yystate()) {
case YYINITIAL:
la = javaKeywords.get(yytext());
break;

case ASPECTJ:
la = aspectJKeywords.get(yytext());
break;

...
}

if(la != null)
return key(la.getToken(this));

return id();
}

}

class LexerAction_c implements LexerAction {
public Integer token;
public Integer nextState;

public int getToken(AbcLexer lexer) {
if(nextState != null)

lexer.enterLexerState(nextState.intValue());
return token.intValue();

}
}

Figure 5.8 Lexer actions in the abc scanner

decremented and the new parenLevel is compared to the parenLevel of the if

pointcut, for which the initial parenLevel has been saved in the entry on the
nestingStack:

<YYINITIAL,ASPECTJ,POINTCUTIFEXPR> {
"(" {

parenLevel++;
return op(sym.LPAREN);

}
")" {

parenLevel--;
if((yystate() == POINTCUTIFEXPR)

&& (parenLevel == nestingStack.peek().parenLevel))
returnToPrevState();

return op(sym.RPAREN);
}

}

Per-clause

There are more places where pointcuts can occur in an AspectJ program: as-
pect declarations optionally take a per-clause, which is used to control the in-
stantiation of aspects. For example, declaring:

aspect Foo perthis(pc) { ... }
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entails that a new aspect instance of Foo is created for every this where the
pointcut pc matches. Finding out the end of the pointcut of a per-clause
is a bit more difficult than for normal pointcuts. The scanner again needs
to find the matching closing parenthesis, but it also needs to know if it is
actually scanning the pointcut of a per-clause or not. Instead of a new lexical
state for per-clause pointcuts, the abc scanner uses a global boolean variable
inPerPointcut. This variable is set to true by a lexer action for all per-clause
keywords (perthis, percflow, etc.):

class PerClauseLexerAction_c extends LexerAction_c {
...
public int getToken(AbcLexer lexer) {
lexer.setInPerPointcut(true);
return super.getToken(lexer);

}
}

For a closing parenthesis in the pointcut lexical state, the scanner now needs
to check if it is currently scanning a per-clause pointcut and if the closing
parenthesis occurs at the same parenthesis level as the opening parenthesis
that preceded the pointcut:

<POINTCUT> {
")" {

parenLevel--;
if(inPerPointcut &&

parenLevel == nestingStack.peek().parenLevel) {
returnToPrevState();
inPerPointcut = false;

}
return op(sym.RPAREN);

}}

Class Keyword

While the end of a lexical state is detected in the flex specification by a lexical
rule for a token, the start of a context is declared in the lexer action of a
keyword. In most cases, the start of a new lexical state is clearly indicated
by a keyword. However, the class keyword does not unambiguously indicate
the start of the Java lexical state for a class declaration, since it may also be
used in class literals (e.g. Foo.class). To distinguish a class literal from a class
declaration, the abc scanner maintains a special variable lastTokenWasDot. All
tokens, except for the dot, set this variable to false. The rule for the class token
can now determine whether it appears in a class literal or a class declaration
and change the scanner state accordingly.

lexer.addGlobalKeyword("class",
new LexerAction_c(new Integer(sym.CLASS)) {

public int getToken(AbcLexer lexer) {
if(!lexer.getLastTokenWasDot())
lexer.enterLexerState(aspectj or java);

return token.intValue();
}

});
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It is interesting to observe the consequences for the scanner if a keyword no
longer unambiguously indicates the next lexical state. In this case, the scanner
needs to be updated for all tokens to maintain the lastTokenWasDot variable.

5.6.2 Parser

Thanks to the rudimentary context-free parsing in the scanner, the AspectJ
grammar of abc is a clean modular extension of the basic Java grammar, im-
plemented in PPG and based on the existing Polyglot grammar for Java. The
grammar defines the entire AspectJ language, including pointcuts and name
patterns, which is not the case in ajc.

Name Patterns

There is one interesting language construct for which some undesirable pro-
duction rules have to be defined: name patterns. The grammar explicitly
allows the reserved keywords of the pointcut lexical state as simple name
pattern to allow name patterns such as Foo.get. Without explicitly allow-
ing keywords, this would be forbidden, since get is a reserved keyword for
pointcuts in abc and will therefore not be parsed as an identifier. The CUP
production rules for this are:

simple_name_pattern ::=
PC_MULT | IDENTIFIERPATTERN | IDENTIFIER
| aspectj_reserved_identifier ;

aspectj_reserved_identifier ::=
ASPECT | ... | PC_GET | ... | PC_SET ... ;

This is somewhat unfortunate, because the keywords for pointcuts are hence
defined in the grammar, as well as in the Java code, namely for adding lexer
actions to the scanner. Extensions of AspectJ implemented in abc that intro-
duce new pointcut keywords have to extend the aspectj reserved identifier

production as well. Extensions may easily forget to do this and thereby re-
serve their keywords in name patterns. This extensibility issue will be dis-
cussed in more detail in Section 5.9.

Ideally, the abc scanner should enter a new lexical state for name patterns,
since the lexical syntax of name patterns differs from pointcuts (i.e. the set of
keywords is different). However, this will be more difficult to implement than
the existing lexical states, since name patterns are not very explicitly delimited
by certain tokens 7.

Parameterized Types

Although abc does not support AspectJ 5.0 and parameterized types, it is
interesting to take a look at how the scanning problems for parameterized
types would be solved in a similar setup of the scanner and parser. Currently,
an extension of Polyglot for Java 5.0 is under development at McGill. In

7Indeed, very recently bug 72 has been created in the abc bugzilla, which proposes to intro-
duce a lexer state for name patterns. See: http://abc.comlab.ox.ac.uk/cgi-bin/bugzilla/

show_bug.cgi?id=72

Chapter 5. Syntax Definition for AspectJ 113

http://abc.comlab.ox.ac.uk/cgi-bin/bugzilla/show_bug.cgi?id=72
http://abc.comlab.ox.ac.uk/cgi-bin/bugzilla/show_bug.cgi?id=72


reference_type_1 ::= reference_type GT
| class_or_interface LT type_argument_list_2;

reference_type_2 ::= reference_type RSHIFT
| class_or_interface LT type_argument_list_3;

reference_type_3 ::= reference_type:a URSHIFT;

wildcard ::= QUESTION;
wildcard_1 ::= QUESTION GT;
wildcard_2 ::= QUESTION RSHIFT;
wildcard_3 ::= QUESTION URSHIFT;

Figure 5.9 Grammar production rules for parameterized types in Polyglot.

contrast to the approach of the abc compiler, the scanner of this extension
does not always produce the correct tokenization for regular Java. Instead, the
grammar works around the incorrect tokenization of parameterized types by
encoding this in the definition of type arguments and reference types. To
illustrate this workaround for incorrect tokenization, some production rules
of this grammar are shown in Figure 5.9 (lots of details have been eluded).
To resolve this issue a different lexical state should be used for types, since
their lexical syntax is different from expressions. However, types will be very
difficult to identify by a scanner in the input file, so this approach is rather
unlikely to work.

Unfortunately, this grammar is now difficult to extend for reference types,
since there are a large number of production rules involved, which encode the
syntax of reference types in a rather tricky way.

5.7 S U M M A RY A N D D I S C U S S I O N

We have discussed two approaches to parsing AspectJ. The ajc compiler uses
a single scanner, but separate parsers (for ‘regular’ code and for pointcut
expressions). The abc compiler uses a single parser with a stateful scanner.
Based on our analysis we can make the following observations. Many rules
on the syntax of AspectJ are only operationally defined in the implementa-
tion of the scanner and parser. As a consequence neither implementation
provides a declarative formalization of the syntax of AspectJ, although the
LALR grammar of abc [Hendren et al. 2004] is a step in the right direction.
The ajc parser has undocumented implementation quirks because of the scan-
ner implemented in and for plain Java. The abc parser improves over this by
using a scanner with lexical states. The abc parser is also more predictable,
but managing the lexical state in the parser is tricky and duplicates code and
development effort. It is difficult to reason about the correctness and com-
pleteness of the context switching rules of the abc scanner. For example, the
use of the global variable inPerPointcut happens to work correctly in case an
anonymous class is used with aspect members in a per-pointcut, but a slight
change or extension of the language may render this implementation invalid.
Choices for introducing lexical states are guided by the complexity of deter-
mining this lexical state in the scanner. For example, a separate lexical state
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for name patterns might be more appropriate. In conclusion, although the
implementation techniques used in the parsers of ajc and abc are effective for
parsing AspectJ, their implementations have several drawbacks.

5.8 A D E C L A R AT I V E S Y N TA X D E F I N I T I O N F O R A S P E C T J

In the previous sections, we have presented a range of implementation is-
sues in parsing AspectJ, and the solutions for these in the two major AspectJ
compilers, i.e. ajc and abc. As a consequence of these issues, the syntax of
the language that is supported by these compilers is not clearly defined. We
conclude that the grammar formalisms and parsing techniques that are used
are not suitable for the specification of the AspectJ language. A complete and
declarative definition of the syntax of the AspectJ language is lacking.

In this section, we present a definition of the syntax of AspectJ that is
declarative, modular, and extensible. Our AspectJ syntax definition is based
on the syntax definition formalism SDF and its implementation with scan-
nerless generalized LR parsing. Thanks to these foundations, the definition
elegantly deals with the extension and embedding of the Java language, the
problems of context-sensitive lexical syntax, and the different keyword poli-
cies of the ajc and abc compilers. Indeed, the modularity of SDF allows us to
define three variants of the AspectJ language:

• Ajf, which is the most liberal definition, where only real ambiguities are
resolved, for example by reserving keywords at very specific locations.

• Ajc, which adds restrictions to the language to be more compatible with
the official AspectJ compiler. The additional restrictions are mostly re-
lated to shift-reduce problems in the LALR parser of ajc.

• Abc, which reserves keywords in a context-sensitive way, thus defining
the language supported by the abc compiler.

The AspectJ syntax definition modularly extends our syntax definition for
Java 5

8. Also, the Ajf, Ajc, and Abc variants are all modular extensions of the
basic AspectJ definition. Moreover, in Section 5.9 we will show that our syntax
definition can easily be extended with new aspect features. In Section 5.10 we
present benchmark results, which show that these techniques yield a parser
that performs linear in the size of the input with an acceptable constant factor,
at least for specification, research and prototyping purposes.

The core observation underlying the syntax definition is that AspectJ is a
combination of languages, namely Java, aspects, and pointcuts. From this
viewpoint, this work applies and extends previous work on combining lan-
guages for the purpose of domain-specific language embedding [Bravenboer
& Visser 2004 (Chapter 2)] and metaprogramming with concrete object syn-
tax [Bravenboer et al. 2005 (Chapter 3)] (see Section 5.11.1).

8Available at http://java.syntax-definition.org
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5.8.1 Integrating Lexical and Context-Free Syntax

SDF integrates the definition of lexical and context-free syntax in a single for-
malism, thus supporting the complete description of the syntax of a language
in a single definition. In this way, the lexical syntax of AspectJ can be in-
tegrated in the context-free syntax of AspectJ, which automatically leads to
context-sensitive lexical syntax. Parsing of languages defined in SDF is imple-
mented by the scannerless generalized LR parser SGLR [Visser 1997a], which
operates on individual characters instead of tokens. Thus, recognizing the
lexical constructs in a source file is actually the same thing as parsing. This
solves most of the issues in parsing AspectJ.

Lexical syntax can be disambiguated in a declarative, explicit way, as op-
posed to the implicit, built-in heuristics of lexical analysis tools, such as a
longest-match policy and a preference for keywords. Without explicit spec-
ification, keywords are not reserved and, for example, are perfectly valid as
identifiers. Instead, keywords can be reserved explicitly by defining reject pro-
ductions.

Java

Figure 5.10 illustrates the basic ideas of SDF with sample modules and pro-
ductions from the Java syntax definition. Of course, the real syntax definition
is much larger and spread over more modules. Note that the arguments of
an SDF production are at the left and the resulting symbol is at the right, so
an SDF production s1 . . . sn -> s0 defines that an element of nonterminal s0
can be produced by concatenating elements from nonterminals s1 . . . sn, in
that order. The modules of Figure 5.10 illustrate that modules have names 14

and can import other modules 15. The module Java defines the composition
of compilation units 16 from package declarations, import declarations, and
type declarations. Note the use of optional (?) and iterated (*,+) nontermi-
nals. The module Expressions defines expression names 17 (local variables,
fields, etc), addition of expressions 18, which is declared to be left associative,
and method invocation 19. The production rule for method invocations uses
{s lit}*, which is concise notation for a list of s separated by lit. The module
Identifiers shows how lexical syntax is defined in the same syntax definition
as the context-free syntax. To define lexical nonterminals such as identifiers SDF
provides character classes to indicate sets of characters 20. The Identifiers

module also defines a longest-match policy for identifiers, by declaring that
identifiers cannot directly be followed by one of the identifier characters 21.
Another difference with respect to other formalisms is that there may be mul-
tiple productions for the same nonterminal. This naturally leads to modular
syntax definitions in which syntax can be composed by importing modules.

Aspects

Similar to the syntax definition of Java, SDF can be used to define modules
for the languages of aspects, pointcut expressions, and patterns. Figure 5.11

presents a few productions for aspect declarations in AspectJ. The first two
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module Java 14

imports Statements Expressions Identifiers 15

exports
context-free syntax

PackageDec? ImportDec* TypeDec+ -> CompilationUnit 16

module Statements
exports
context-free syntax

"for" "(" FormalParam ":" Expr ")" Stm -> Stm
"while" "(" Expr ")" Stm -> Stm

module Expressions
exports
context-free syntax

ExprName -> Expr 17

Expr "+" Expr -> Expr {left} 18

MethodSpec "(" {Expr ","}* ")" -> Expr 19

MethodName -> MethodSpec
Expr "." TypeArgs? Id -> MethodSpec

module Identifiers
exports
lexical syntax

[A-Za-z\_\$][A-Za-z0-9\_\$]* -> Id 20

lexical restrictions
Id -/- [a-zA-Z0-9\_\$] 21

Figure 5.10 Fragment of syntax definition for Java

productions define aspect declarations 22 and aspect declaration headers 23.
Both productions use nonterminals from Java, for example Id, TypeParams

(generics), and Interfaces. The aspect header may have a per-clause, which
can be used to control the instantiation scheme of an aspect. For instance, a
perthis clause 24 specifies that one aspect instance is created for each currently
executing object (this) in the join points matched by the pointcut expression
given as a parameter. The per-clause pertypewithin 25, which has been added
to the language in AspectJ 5, is used to create a new aspect instance for each
type that matches the given type pattern. This is the only per-clause that does
not take a pointcut expression as an argument.

Advice declarations 26 are mainly based on an advice specifier and a point-
cut expression, where an advice specifier can be a before 27, after 28, or around 29

advice. Note that most of the productions again refer to Java constructs, for
example ResultType and Param (an abbreviation of FormalParam).

Pointcuts

The AspectJ pointcut language is a language for concisely describing a set
of join points. Pointcut expressions consist of applications of pointcut des-
ignators, which can be primitive or user-defined. Also, pointcut expressions
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module AspectDeclaration
exports
context-free syntax
AspectDecHead AspectBody -> AspectDec 22

AspectMod* "aspect" Id TypeParams? Super?
Interfaces? PerClause? -> AspectDecHead 23

"perthis" "(" PointcutExpr ")" -> PerClause 24

"pertypewithin" "(" TypePattern ")" -> PerClause 25

AdviceMod* AdviceSpec Throws? ":" PointcutExpr
MethodBody -> AdviceDec 26

"before" "(" {Param ","}* ")" -> AdviceSpec 27

"after" "(" {Param ","}* ")" ExitStatus? -> AdviceSpec 28

ResultType "around" "(" {Param ","}* ")" -> AdviceSpec 29

"returning" "(" Param ")" -> ExitStatus 30

Figure 5.11 Fragment of syntax definition for aspects and advice

module PointcutExpression
exports
context-free syntax
"call "(" MethodConstrPattern ")" -> PointcutExpr 31

"get" "(" FieldPattern ")" -> PointcutExpr 32

"this" "(" TypeIdStar ")" -> PointcutExpr 33

"cflow" "(" PointcutExpr ")" -> PointcutExpr 34

"if" "(" Expr ")" -> PointcutExpr 35

PointcutName "(" {TypeIdStar ","}* ")" -> PointcutExpr 36

Id -> PointcutName

Figure 5.12 Fragment of syntax definition for AspectJ pointcut expressions.

can be composed using boolean operators. Figure 5.12 shows some of the
primitive pointcuts of AspectJ. The call 31 and get 32 pointcut designators
take patterns of methods, constructors, or fields as arguments. The this 33

pointcut designator cannot be used with arbitrary type patterns. Instead, the
argument must be a Type, an Id or a wildcard. The if 35 pointcut designator,
which we have discussed before, takes a boolean Java expression as an argu-
ment. Finally, Figure 5.12 defines the syntax for user-defined pointcuts 36 in
pointcut expressions, which have been declared somewhere in the program
using a pointcut declaration.

Patterns

The AspectJ pattern language plays an important role: as we have already
seen, most of the pointcut designators operate on patterns. Figure 5.13 shows
some productions for the syntax of the pattern language. Name patterns are
used to pick out names in a program. A name pattern is a composition of
identifier patterns 44, which are used for matching identifiers (i.e. names with-
out a dot) by adding a * wildcard to the set of identifier characters. The ..

wildcard 37 can be used to include names from inner types, subpackages, etc.
Almost every pointcut uses type patterns, which are used for selecting types.
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module Pattern
exports
context-free syntax

IdPattern -> NamePattern
NamePattern "." IdPattern -> NamePattern
NamePattern ".." IdPattern -> NamePattern 37

PrimType -> TypePattern 38

TypeDecSpecPattern -> TypePattern
TypeDecSpecPattern TypeParamsPattern -> TypePattern 39

NamePattern -> TypeDecSpecPattern 40

NamePattern "+" -> TypeDecSpecPattern 41

FieldModPattern TypePatttern ClassMemberNamePattern
-> FieldPatttern 42

MethodModPattern TypePattern ClassMemberNamePattern
"(" {FormalPattern ","}* ")" ThrowsPattern? -> MethodPattern 43

lexical syntax
[a-zA-Z\_\$\*][a-zA-Z0-9\_\$\*]* -> IdPattern 44

Figure 5.13 Fragment of syntax definition for AspectJ patterns

Any name pattern is a type pattern 40, but type patterns can also be used to
match subtypes 41, primitive types 38, parameterized types 39, etc.

Method 43 and field patterns 42 combine name patterns, type patterns, modifier
patterns, throw patterns and patterns for formal parameter into complete sig-
nature patterns that are used to match methods and fields by their signatures.

5.8.2 Composing AspectJ

We have now illustrated how the syntax of the sublanguages of AspectJ (Java,
aspects, pointcuts, and patterns) can be defined as separate SDF modules.
Next, we need to compose these modules into a syntax definition for AspectJ
itself. In SDF, we can combine two syntax definitions by creating a new mod-
ule that imports the main modules of the languages that need to be combined.
The ease with which syntax definitions can be composed, is due to the two
main features of the underlying parser: scannerless parsing and the use of the
generalized LR algorithm.

First, in a setting with a separate scanner such a combination would cause
conflicts as has extensively been discussed in Section 5.4. However, in the
scannerless SDF setting this does not pose a problem. Since lexical analysis
is integrated with parsing, context-sensitive lexical analysis comes for free.
For example, when parsing 1+1 as a Java expression the + will be seen as
an addition operator 18, but when parsing Foo+ in the context of a pointcut
expression, then the + will be interpreted as a subtype pattern 41.

Second, if LL, LR, or LALR grammars are used, then the combination of
one or more languages is not guaranteed to be in the same subset, since these
subsets of the context-free languages are not closed under composition. In-
deed, if we combine method declarations from Java and advice declarations
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module AspectJ 45

imports
Java AspectDeclaration PointcutExpression Pattern 46

exports
context-free syntax
AspectDec -> TypeDec 47

ClassBodyDec -> AspectBodyDec 48

AspectDec -> ClassMemberDec 49

PointcutDec -> ClassMemberDec 50

Figure 5.14 SDF module combining Java, pointcut, and aspect declarations.

from aspects, then shift-reduce conflicts pop up since this combination is no
longer LALR, as has been discussed in Section 5.5.3. Since SDF is imple-
mented using generalized LR parsing, SDF supports the full class of context-
free grammars, which is closed under composition. Hence, new combinations
of languages will stay inside the same class of context-free grammars.

Nevertheless, in some cases there will be ambiguities in the new combina-
tion of languages where there are actually two or more possible derivations
for the same input. These ambiguities can be solved in a declarative way us-
ing one of the SDF disambiguation filters [van den Brand et al. 2002], such
as reject, priorities, prefer, and associativity. Section 5.9 presents examples of
this in AspectJ extensions. However, this is not the case for AspectJ. For exam-
ple, the around advice problem is not a real ambiguity: the syntax of around
advice and method declarations are similar for the first few arguments, but
the colon and the pointcut expression distinguishes the around advice syntac-
tically from method declarations.

AspectJ

Figure 5.14 illustrates how the languages can be combined by importing 46

the modules of Java, aspects, pointcuts, and patterns 9. In this way, most of
the integration happens automatically: the productions for pointcut expres-
sions already refer to patterns and aspect declarations already refer to point-
cut expressions and patterns. By importing all modules, the symbols and
productions of these modules will be combined, and as a result the pointcut
expressions will automatically be available to the aspect declarations.

The integration of the languages can be extended and refined by adding
more productions that connect the different sublanguages to each other. For
instance, aspect declarations (AspectDec) are Java type declarations, since they
can be used at the top-level of a source file 47 (see also the production rule for
compilation units 16). Furthermore, aspect declarations 49 and pointcut decla-
rations 50 can occur inside a class, i.e. as members of a Java class declaration.

Just as aspects and pointcuts can be defined in regular Java code, the dec-
larations of aspects can contain Java members such as constructors, initial-
izers, fields, and method declarations. Thus, Java class body declarations

9The actual composition in the full definition is somewhat different, to make the definition
more customizable. We will discuss this later.
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(ClassBodyDec, i.e. elements of a Java class body) are allowed as aspect body
declarations 48.

5.8.3 Disambiguation and Restrictions

We have not yet defined any reserved keywords or other restrictions for the
syntax that we have presented. Next, we explain how the syntax definition
can be extended in a modular way to impose additional restrictions on the
language, such as different reserved keyword policies and requirements for
being compatible with the language accepted by an LALR grammar. First,
we discuss how keywords can be reserved in SDF. Next, we discuss the real
ambiguities of the language that we have presented so far. The resulting
syntax definition, which is the most liberal AspectJ syntax definition without
ambiguities, is called Ajf. After that, we extend the restriction to achieve the
Ajc and Abc variants, which are designed to be compatible with the AspectJ
language as supported by the ajc and abc compilers, respectively.

Reserving Keywords

Scannerless parsing does not require a syntax definition to reserve keywords.
Depending on the context, the same token can for example be interpreted as
a keyword or as an identifier. However, in some cases a keyword is inherently
ambiguous if it is not reserved. For example, the Java expressions this and
null would be ambiguous with the identifiers this and null if they would not
be reserved. In SDF reserved keywords are defined using reject productions [Vis-
ser 1997a], which are productions annotated with the reject keyword. The
following two SDF productions illustrate this mechanism:

"abstract" | "assert" | ... | "while" -> Keyword
Keyword -> Id {reject}

The first production defines keywords and the second rejects these keywords
as identifiers. Reject productions employ the capability of generalized LR
parsers to produce all possible derivations. In case of a keyword, there will
be two possible derivations: one using the real production for identifiers and
one using the reject production. If the reject production is applicable, then all
possible parses that produce the same nonterminal (in this case Id) are elim-
inated. In this way, the parse that uses the production for the real identifier
is disallowed. Thus, in SDF reserved keywords are defined per nonterminal: in
the example above, the keywords are only reserved for the Id nonterminal. If
other identifier-like nonterminals would exist in Java (which is not the case),
then keywords would not be reserved for that nonterminal. Because there is
just a single identifier nonterminal for regular Java, this feature does not add
much over a mechanism for global keywords, but the feature is most useful
if languages are being combined: it can be used for defining context-sensitive
keywords.
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Ajf

One of the few ambiguities in the syntax definition are the applications of
user-defined 36 and primitive pointcut designators. For example, the pointcut
expression this(Foo) can be parsed as the primitive pointcut this, but it can
also parsed as a user-defined pointcut with the same name. To resolve this
ambiguity, Ajf rejects the names of primitive pointcuts as the name of a user-
defined pointcut, which is similar to the behaviour of ajc and abc. To make
the names of primitive pointcuts available to extensions and the other variants
of AspectJ, we introduce a new nonterminal: PrimPointcutName. These names
are rejected as the name of a used-defined pointcut.

"adviceexecution" | "args" | "call" | ...
| "within" | "withincode" -> PrimPointcutName

PrimPointcutName -> PointcutName {reject}

Another ambiguity that needs to be resolved by reserving keywords occurs in
type patterns. Type patterns are composed of name and identifier patterns,
but we have not imposed any restrictions on these name patterns, which im-
plies that a name pattern can just as well be one of the built-in types int,
float, void, etc. We do not want to reject these types as identifier patterns in
general, since there is actually no ambiguity there. To resolve this ambiguity
more precisely, we can disallow keywords only for the name patterns that are
used as type patterns, i.e. TypeDecSpecPatterns 40.

Keyword -> TypeDecSpecPattern {reject}

The final ambiguity is a bit more surprising. The ajc compiler does not
reserve keywords in patterns, not even the regular Java keywords (except
for the bug with the if pseudo token). For example, the method pattern *

try(String) is accepted by ajc. Of course, this is not very useful since there
can never be a method with this name, but for now we follow this decision. As
a result of this, the identifier pattern new is allowed for the name of a method
in a method pattern. Surprisingly, the constructor pattern *Handler+.new()

can now also be parsed as a method pattern by splitting the *Handler identi-
fier pattern after any of its characters. The part before the split then serves as a
type pattern for the return type of the method. For example, one of the results
of parsing are the method patterns * Handler+.new() and *H andler+.new().
The reason for this is that SDF does not by default apply a longest-match
policy. Of course, this split is not desirable, so to disallow this, we define a
longest-match policy specifically for identifier patterns using a follow restric-
tion, which forbids derivations where an identifier pattern is followed by a
character that can occur in a pattern.

IdPattern -/- [a-zA-Z0-9\_\$\*]

Ajc Compatibility

In Section 5.5.3 we have discussed the pseudo keyword policy of ajc in detail.
Basically, the pseudo keywords of AspectJ are only reserved for a few specific
language constructs. This can concisely be expressed using reject productions,
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which allow the definition of reserved keywords per nonterminal. Similar to
the PrimPointcutName we introduced earlier, a new nonterminal for pseudo
keywords can be used. For all the language constructs that cannot be pseudo
keywords, a reject production is defined. For example:

"aspect" | "pointcut" | "privileged" | "before"
| "after" | "around" | "declare" -> PseudoKeyword

PseudoKeyword -> TypeName {reject}
PseudoKeyword -> PackageOrTypeName {reject}

The first production handles the case where a typename is a single identifier
(e.g. aspect). The second case rejects pseudo keywords as the first identifier of
the qualifier of a typename (i.e. a package- or typename), which corresponds
to the behavior of ajc, where pseudo keywords are not allowed as the first
identifier of a typename. Finally, to be more compatible with ajc, Ajc could
produce parse errors for incorrect floating-point literals in name patterns by
defining the syntax of incorrect floating-point literals and the name patterns
that contain them. These patterns can then be rejected as name patterns. If
this behaviour were required, then this might be useful, but for now we leave
this as an ‘incompatibility’.

Abc Compatibility

While extending the syntax definition for compatibility with ajc was relatively
easy, extending the definition (as we have presented it until now) to become
compatible with abc is substantially more difficult, if undertaken without the
appropriate solutions. First, we discuss how a relatively easy restriction of abc
can be enforced. This leads to the explanation why other restrictions are im-
possible to solve concisely in the current setup. For this, and for the definition
of AspectJ extensions, we present a novel method of combining languages
using grammar mixins. Grammar mixins then arise as the key mechanism for
composing the languages involved in AspectJ. After discussing grammar mix-
ins, we return to the Abc compatibility.

Keywords and Name Patterns In Section 5.6 we have discussed that the abc

compiler reserves a different set of keywords per lexical state. For example, in
the lexical state of a pointcut, abc reserves all the names of primitive pointcut
designators. To support these keywords (such as the rather common get and
set) in identifier patterns, they are explicitly allowed by the grammar of abc

(Section 5.6.2). In SDF, this is not an issue: keywords are reserved per nonter-
minal, so keywords that have been reserved for identifiers are still allowed as
identifier patterns. As opposed to ajc, abc does not allow regular Java key-
words as identifier patterns, so the previous example of the method pattern
* try(String) results in a syntax error. In our Abc compatible variant, this is
handled by rejecting plain Java keywords as identifier patterns:

Keyword -> IdPattern {reject}

However, it is not obvious how the context-sensitive keywords of abc could be
defined. For example, consider the following candidate for making primitive
pointcut names keywords:
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PrimPointcutName -> Keyword

Unfortunately, adding this production reserves keywords in every context, not
just in pointcuts. The previous reject production for IdPattern illustrates why
this is the case: we only have a single keyword nonterminal and in this way
we cannot have context-specific sets of keywords. Moreover, we have just a
single identifier nonterminal (Id), but an identifier can occur in every context,
and for every context we need to reserve a different set of keywords. Since
we cannot refer to an identifier in a specific context, it is impossible to define
reserved keywords for it. Grammar mixins are a solution for this, but are
more generally useful than just for defining reserved keywords.

5.8.4 Grammar Mixins

In the context of object-oriented programming, mixins are abstract subclasses
that can be applied to different superclasses (i.e. are parameterized in their
superclass) and in this way can form a family of related classes [Bracha &
Cook 1990]. In the context of grammars, grammar mixins are syntax defini-
tions that are parameterized with the context in which they should be used.
The key observation that leads to the use of mixins for defining AspectJ is that
the language uses multiple instances of Java, which are mixed with the new
language constructs of AspectJ. For example, a Java expression in the context
of an if pointcut is different from a Java expression in an advice declaration
or in a regular Java class. Similarly, an identifier in the context of a pointcut is
different from an identifier in an aspect body declaration. Therefore, it should
be possible to handle them as separate units, which would make it possible
to customize them separately.

Therefore, the Java language should be reusable in the definition of a new
language, where the Java syntax effectively becomes part of the new syntax
definition, i.e. if syntax definition A1 imports B and C using mixin compo-
sition, then the syntax of B and C should effectively become part of A1. A
different language A2 should be able to compose itself with B or C and mod-
ify this new composition without affecting the other combination of A1, B,
and C.

Grammar mixins provide a more flexible way of composing languages
compared to the plain import mechanisms of SDF that we have been using
until now. Using grammar mixins, Java can be mixed with pointcuts, name
patterns, and aspects and each of these combinations is again a unit for com-
position. Also, it is possible to extend, customize, or restrict the Java language
only for some specific combination. In particular, SDF grammar mixins flour-
ish because the syntax definitions that are subject to mixin compositions are
complete: the lexical as well as the context-free syntax is being composed
and can both be customized for a specific composition. In the next section we
will show how grammar mixins can be used to their full potential to combine
AspectJ language extensions by unifying mixin compositions.

SDF Implementation For the implementation of grammar mixins we make
use of a combination of existing SDF features whose applicability to syntax
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module JavaMix[Ctx] 51

imports Java 52

[ CompilationUnit => CompilationUnit[[Ctx]] 53

TypeDec => TypeDec[[Ctx]]
...
FieldAccess => FieldAccess[[Ctx]]
MethodSpec => MethodSpec[[Ctx]]
Expr => Expr[[Ctx]] ]

Figure 5.15 SDF grammar mixin for Java.

module AspectJ[JavaCtx AspectCtx PointcutCtx PatternCtx]
imports
JavaMix[JavaCtx] 54

JavaMix[AspectCtx]
JavaMix[PointcutCtx]
JavaMix[PatternCtx]
aspect/Declaration[AspectCtx JavaCtx] 55

pattern/Main[PatternCtx] 56

pointcut/Expression[PointcutCtx JavaCtx] 57

Figure 5.16 Main module of grammar mixin-based AspectJ

definition had not been fully explored previously: parameterized modules
and parameterized symbols. Figure 5.15 shows the SDF implementation of
the mixin module for Java. An SDF grammar mixin is an SDF module that
has a formal parameter 51 that identifies a particular mixin composition. By
convention this parameter is called Ctx (for context) and the module name
has the suffix Mix. This grammar mixin module imports the real syntax def-
inition 52 and applies a renaming 53 to all the nonterminals of the grammar,
which places these nonterminals in the given Ctx by using a parameterized
nonterminal. The list of renamings covers all the nonterminals of the lan-
guage, which can be a very long list that is tedious to maintain. Therefore, we
provide a tool gen-sdf-mix that generates a grammar mixin module given an
SDF syntax definition. The grammar mixin is never modified by hand, so it
can be regenerated automatically.

All grammar mixins that are imported using the same symbol for Ctx are
subjected to mixin composition. In a way, the import statement of SDF and
Ctx symbol are the mixin composition operators of grammar mixins. For
grammar mixins, composition means that the grammars of the syntax defini-
tions involved in a composition are fully automatically combined, based on
the normal SDF grammar composition semantics (which are also applied to
plain imports).

5.8.5 AspectJ in the Mix

Now we have revealed the actual design of the syntax definition, we need to
revise the presentation of the AspectJ syntax. Figure 5.16 shows the imports of
the main module of the syntax definition. The Ajf, Ajc, and Abc variants im-
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AspectDec -> TypeDec[[JavaCtx]] (see 47)
ClassBodyDec[[AspectCtx]] -> AspectBodyDec (see 48)
AspectDec -> ClassMemberDec[[JavaCtx]] (see 49)
PointcutDec -> ClassMemberDec[[JavaCtx]] (see 50)

"before" "(" {Param[[AspectCtx]] ","}* ")" -> AdviceSpec (see 27)
"if" "(" Expr[[JavaCtx]] ")" -> PointcutExpr (see 35)
PrimType[[PatternCtx]] -> TypePattern (see 38)

Figure 5.17 AspectJ productions updated to grammar mixins. The numbers refer
to the productions mentioned earlier.

port this module and the variant specific modules. The AspectJ module itself
has four contexts parameters, to make the mixin composition configurable for
AspectJ extensions. AspectJ imports the grammar mixin JavaMix four times,
once for every context. This makes all the nonterminals of Java available to
AspectJ in these four contexts. The choice of the four contexts is somewhat
arbitrary. For example, it might be a good idea to introduce an additional
context for advice. Fortunately, this is very easy to do by just importing an-
other instance of the Java grammar mixin with a symbol for that context. Our
syntax definition has one context more than the abc scanner has lexical states:
abc does not place patterns in a separate context.

Next, the modules for the sublanguages are imported, passing the required
contexts as parameters to the modules. For example, pointcut expressions 57

need to know their own context, but also the context of regular Java expres-
sions.

The imports of JavaMix and the sublanguage modules automatically com-
pose all mixin compositions, but we still need to make some interactions ex-
plicit, like we did earlier in Figure 5.14. However, this time the productions
also connect nonterminals from different contexts (mixin compositions). Fig-
ure 5.17 shows some of the production rules that we have discussed earlier,
but this time using the context parameters. For example, aspect declarations
are type declarations in the JavaCtx 47, but all the arguments of the aspect dec-
laration will be in the context of aspects, so an aspect declaration changes the
context from JavaCtx to AspectCtx in this case. The second production 48 de-
fines that regular Java class body declarations from the aspect context can be
used as aspect body declarations. The productions for aspect 49 and pointcut
declarations 50 make these constructs available as class members in the regular
Java context. Advice specifiers 27 use Java’s formal parameters from the aspect
context. The if pointcut expression takes an expression from the regular Java
context as an argument. For Abc compatibility, we will later define reserved
keywords per context. By using the expression from the Java context, aspect and
pointcut-specific keywords will be allowed in this Java expression. Finally, the
type pattern for primitive types 38 now uses a primitive type from the pattern
context.

Note that the choice of the context of a symbol is completely up to the
language designer: for every production argument we can choose the most
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appropriate context. The choice of the context switches (lexical state transi-
tions) is not influenced by the complexity of recognizing the context during
lexical analysis. In the next section we show that this enables language de-
signers to improve their language designs.

5.8.6 Abc Compatibility Revised

Thanks to the grammar mixins, we can now declare a different set of re-
served keywords for each context. The AspectJ grammar now has four non-
terminals for identifiers: Id[[JavaCtx]], Id[[AspectCtx]], Id[[PointcutCtx]], and
Id[[PatternCtx]]. Similarly, there are four nonterminals for keywords. Thus,
the syntax definition can now reject a different set of reserved keywords for
each specific context. The reject production is in fact already defined in the
Java modules imported by the AspectJ definition, so we only need to extend
the existing set of keywords. For the Java context, abc introduces three new
keywords:

"privileged" | "aspect" | "pointcut" -> Keyword[[JavaCtx]]

For the aspect context, abc introduces a series of new keywords. Also, every
keyword from the Java context is a keyword in aspect context.

"after" | ... |"proceed" -> Keyword[[AspectCtx]]
Keyword[[JavaCtx]] -> Keyword[[AspectCtx]]

However, proceed is now a reserved keyword in aspect declarations, so it is
no longer allowed as the name of a method invocation, which now rejects the
special proceed call for invoking the original operation in an around advice.
To reintroduce the proceed call, we need to allow it explicitly as a method
specifier in the aspect context (note that an advice context would be useful
here, though that would not be compatible with abc, which is the whole point
of this exercise).

"proceed" -> MethodSpec[[AspectCtx]]

In the context of pointcuts, abc reserves the Java keywords, primitive pointcut
names, and some additional keywords from the context of aspects.

Keyword[[JavaCtx]] -> Keyword[[PointcutCtx]]
PrimPointcutName -> Keyword[[PointcutCtx]]
"error" | ... | "warning" -> Keyword[[PointcutCtx]]

Finally, we still need to define keywords for the context of patterns, since our
syntax definition uses a separate context for that. In abc, these two states are
merged, so defining pattern keywords is easy:

Keyword[[PointcutCtx]] -> Keyword[[PatternCtx]]
Keyword[[PatternCtx]] -> IdPattern {reject}

We have now defined the keyword policy of abc in a declarative way as a
modular extension of the basic syntax definition.
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5.9 A S P E C T J S Y N TA X E X T E N S I O N S

In the last few years, there has been a lot of research on extensions of AspectJ.
For experimenting with aspect-oriented language features, an extensible compiler
for AspectJ is most useful. One of the goals of the abc project is to facilitate this
research by providing such an extensible compiler. The previous sections have
highlighted a few challenges for the definition of the syntax of AspectJ and the
implementation of an AspectJ parser. The result of this complexity is that the
parsers of ajc and abc are more complex than usual, since the requirements
imposed on the parser by the language do not match the conventional parsing
techniques too well.

This section demonstrates these limitations through several existing exten-
sions and their issues. We compare the implementation of the syntax of the
extensions in abc to the definition of the syntax in SDF, based on the syntax
definition for AspectJ that we presented in the previous section. We would
like to emphasize that this discussion is all about the syntax of the extensions,
and not about the other compiler phases. Our modular and declarative ap-
proach for the definition of the syntax of AspectJ does not suddenly make
the complete implementation of AspectJ extensions trivial, since a lot of work is
going on in later compiler phases.

5.9.1 Issues in Extensibility

The abc compiler is based on Polyglot [Nystrom et al. 2003], which provides
PPG, a parser generator for extensible grammars based on CUP, a LALR
parser generator. The extensibility features of PPG are based on manipula-
tion of grammars, with features such as drop a symbol, override productions
of a symbol, and extend the productions of a symbol. This way of extending
a grammar works in practice for most of the language extensions that have
been implemented for abc until now. Unfortunately this is not a truly modu-
lar mechanism, since LALR grammars do not compose, which means that the
user of PPG has to make sure that the composed grammar stays in the LALR
subclass of context-free grammars. For example, we have discussed the prob-
lem of around advice and method declarations with the name around. The abc

compiler overcomes some of these issues by reserving keywords.
PPG does not feature an extensible scanner, so the abc compiler implements

its own, stateful scanner as we have discussed in detail. This works fine for the
basic AspectJ language, but it is inherently not modular. The rules for switch-
ing from context are based on knowledge of the entire language that is being
scanned, which breaks down if the language is extended in an unexpected
way. The abc scanner allows extensions to add keywords to specific states of
the scanner. In this way, it is relatively easy to add keywords, but it is difficult
to add operators and it is much more difficult to add new scanner states. For
example, suppose that AspectJ did not define an if(...) pointcut. It would
have been non-trivial to extend the scanner to handle this pointcut, since it
requires the introduction of a new lexical state that affects several aspects of
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module HelloWorld[JavaCtx AspectCtx PointcutCtx]
exports
context-free syntax

"cast" "(" TypePattern ")" -> PointcutExpr 58

"global"":" ClassNamePattern ":" PointcutExpr ";" -> PointcutDec 59

"cflowlevel" "(" IntLiteral[[JavaCtx]] "," PointcutExpr ")"
-> PointcutExpr 60

lexical syntax
"cast" -> Keyword[[PointcutCtx]]
"cflowlevel" -> Keyword[[PointcutCtx]]
"global" -> Keyword[[JavaCtx]]
"global" -> Keyword[[AspectCtx]]

Figure 5.18 Syntax of some abc extensions implemented in SDF

the scanner. In these situations, the scanner has to be copied and modified,
which is undesirable for maintenance and composition of extensions.

The modular syntax definition we have presented solves many of these
issues, since the definition itself can be extended in a modular way as well.
Context or lexical state management is not based on rudimentary context-
free parsing in the scanner, but fully integrated in the parser by the use of
scannerless parsing. Moreover, contexts can be unified by mixin composition
and ambiguities can be resolved in a modular way.

5.9.2 Simple Extensions

First, we discuss some small AspectJ extensions that are part of the EAJ (Ex-
tended AspectJ) extension of abc. The SDF implementation of the extensions
is shown in Figure 5.18. Similar to the way Java is extended, the AspectJ syn-
tax definition can be extended by creating a new module that imports AspectJ
and adds new constructs.

Cast and Global Pointcuts

The cast pointcut designator 58 can be used to select points in the program
where an implicit or explicit cast is performed. This is a very simple pointcut
designator, yet this simple example already introduces a problem the imple-
menter of the extension should be aware of. The keyword cast is reserved in
the context of a pointcut, which means that it is no longer allowed as part of a
name pattern (see Section 5.6.2). To resolve this, the keyword should be added
to the simple name patterns explicitly, which has not been done for this extension
in the abc implementation. The same problem occurs in the implementation
of global pointcuts 59 (a mechanism for globally restricting some aspects by
extending their pointcut definitions). In our syntax definition this is not an
issue, since the keywords are reserved per nonterminal.
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module AspectJMix[Ctx]
imports AspectJ
[ AspectDec => AspectDec[[Ctx]]
AspectBodyDec => AspectBodyDec[[Ctx]]
...
TypePattern => TypePattern[[Ctx]]
PointcutExpr => PointcutExpr[[Ctx]] ]

Figure 5.19 Grammar Mixin for AspectJ

CFlow Level

The cflowlevel 10 pointcut designator is an extension used to select join points
based on the level of recursion. The cflowlevel pointcut designator takes
two arguments: a number for the recursion level and a pointcut. However,
the lexical state for pointcuts in abc does not allow integer literals. To avoid
the need for a new lexical state or other complex solutions, the syntax of
the cflowlevel construct was changed to a string literal, which is supported
in the pointcut lexical state 11. Unfortunately, in this case the syntax of the
extension was designed to fit the existing lexical states of the scanner. In the
SDF implementation of this extension referring to an integer literal is not a
problem.

5.9.3 Open Modules

Open modules were proposed by Aldrich [Aldrich 2005] to solve the coupling
issues that arise between aspects and the code they advise. It provides an en-
capsulation construct that allows an implementation to limit the set of points
to which external advice applies. Recently, an abc extension was proposed
that extends open modules to full AspectJ ([Aldrich 2005] deals with a small
functional language) and defines appropriate notions of module composi-
tion [Ongkingco et al. 2006]. The normal form of open modules as proposed
in [Ongkingco et al. 2006] is as follows:

module ModuleName {
class class name pattern
friend list of friendly aspects
expose : pointcut defining exposed join points

}

A module declaration applies to a set of classes as specified in the class part.
It states that aspects can only advise join points matched by the pointcut
specified in the expose part. Friendly aspects, listed in the friend part, have un-
restricted access to the join points occurring within classes of the module. The
exact syntax is more elaborate for notational convenience, and also includes
constructs for restricting or opening modules upon composition.

The parsing of open modules requires a new lexical state. This need falls
out of the designed extensibility of abc, as highlighted in Section 5.6. As a

10Available at http://www.cs.manchester.ac.uk/cnc/projects/loopsaj/cflowlevel/
11See http://abc.comlab.ox.ac.uk/archives/dev/2005-Aug/0003.html
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module OpenModule[JavaCtx]
exports
context-free syntax

ModDec+ -> CompilationUnit[[JavaCtx]]
Root? "module" Id "{" ModMember* "}" -> ModDec
"class" ClassNamePattern ";" -> ModMember
"friend" {AspectName ","}+ ";" -> ModMember
"open" {Module ","}+ ";" -> ModMember
"constrain" {Module ","}+ ";" -> ModMember
Private? "expose" ToClause? ":" PointcutExpr ";" -> ModMember
Private? "advertise" ToClause? ":" PointcutExpr ";" -> ModMember
"to" ClassNamePattern -> ToClause

lexical syntax
"root" | "module" -> Keyword[[JavaCtx]]
"module" | ... | "advertise" -> Keyword

Figure 5.20 SDF module extending AspectJ with open modules.

consequence the full scanner has to be copied and modified. Although just
15 lines of code had to be modified in the copy, this introduces a maintenance
problem: copying the scanner implies that the developer of the extension has
to keep the extension in sync with the main scanner of abc, which is bound
evolve, for example to introduce support for AspectJ 5.

Conversely, SDF allows the syntax of open modules to be concisely and
modularly expressed, as illustrated in Figure 5.20. A new context can be
introduced in a modular way. The implementation is based on the AspectJ
grammar mixin module of Figure 5.19.

5.9.4 Context-Aware Aspects

We now consider the AspectJ syntax extensions for the pointcut restrictors
proposed in [Tanter et al. 2006] for context-aware aspects. Context-aware aspects
are aspects whose pointcuts can depend on external context definitions, and
whose advices may be parameterized with context information. Contexts are
stateful, parameterized objects: they are specified by implementing a context
class with a method that determines whether the context is active or not at a
given point in time; context activation can be based on any criteria, like the
current control flow of the application, some application-specific condition, or
input from environment sensors. A context is an object that may hold relevant
state information (such as the value obtained from a given sensor).

Context-aware aspects [Tanter et al. 2006] propose a number of general-
purpose and domain- or application-specific pointcut restrictors for restrict-
ing the applicability of an aspect based on some context-related condition.
These pointcut restrictors are explained using an AspectJ extended syntax,
although only a framework-based implementation is provided, based on the
Reflex AOP kernel [Tanter & Noyé 2005].
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Syntax of Context-Aware Aspects

The inContext pointcut restrictor is similar to an if pointcut designator, re-
stricting the applicability of an aspect (e.g. Discount) to the application cur-
rently being in a certain context (e.g. PromotionCtx):

pointcut amount():
execution(double Item.getPrice()) && inContext(PromotionCtx);

Also, context-aware aspects provide a mechanism to expose state associated
to the context (e.g. a discount rate) as a pointcut parameter, subsequently it
can be used in the advice. In the following example, the rate property of the
PromotionCtx is exposed in the pointcut and subsequently used in the advice
to compute the associated discount.

aspect Discount {
pointcut amount(double rate):
execution(* ShoppingCart.getAmount())

&& inContext(PromotionCtx(rate));

double around(double rate): amount(rate) {
return proceed() * (1 - rate);

}
}

Context activation can be parameterized in order to foster reuse of contexts.
For instance, a stock overload context can be parameterized with the ratio of
stock overflow required to be considered active. In the following example, the
amount pointcut matches only if the stock overload factor is superior to 80%
when the rest of the pointcut matches.

pointcut amount():
execution(* ShoppingCart.getAmount())

&& inContext(StockOverloadCtx[.80]);

An important characteristic of the approach presented in [Tanter et al. 2006]
is the possibility to extend the set of pointcut restrictors, either general pur-
pose or domain/application specific. Hence the set of context restrictors is
open-ended. An example of a general-purpose restrictor is one that makes it
possible to refer to past contexts, such as the context at creation time of an ob-
ject. For instance, the createdInCtx restrictor in the next example refers to the
context in which the currently-executing object was created. The amount point-
cut matches if the current shopping cart was created in a promotional context,
independently of whether the promotion context is still active at check-out
time.

pointcut amount():
execution(* ShoppingCart.getAmount()) && createdInCtx(PromotionCtx);

An example of application-specific restrictor is putInCartInCtx, which refers
to the context at the time an item was put in the shopping cart:

pointcut amount():
execution(* Item.getPrice()) && putInCartInCtx(PromotionCtx);
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module CtxAspect
exports
context-free syntax

"inContext" "(" ActualCtx ")" -> PointcutExpr
"createdInCtx" "(" ActualCtx ")" -> PointcutExpr
TypeName[[JavaCtx]] ACParams? ACValues? -> ActualCtx
"[" {Expr[[JavaCtx]] ","}+ "]" -> ACParams
"(" {CtxId[[JavaCtx]] ","}+ ")" -> ACValues

lexical syntax
"inContext" | "createdInCtx" -> Keyword[[PointcutCtx]]

module EShopCtxAspect
imports CtxAspect
exports
context-free syntax
"putInCartInCtx" "(" ActualCtx ")" -> PointcutExpr

lexical syntax
"putInCartInCtx" -> Keyword[[PointcutCtx]]

Figure 5.21 Two SDF modules for context-aware aspects: (top) general-purpose
pointcut restrictors; (bottom) application-specific extension for the EShop.

Parsing Context-Aware Aspects

Extending AspectJ with the two general-purpose context restrictors inContext

and createdInCtx can be defined in a CtxAspect SDF module (Figure 5.21

(top)). The context-free syntax section defines the new syntax: a context re-
strictor followed by the actual context definition; a context is a Java type name,
with optional parameters and values (for state exposure). The lexical syntax
section specifies that the new pointcut restrictors have to be considered as
keywords in a pointcut context.

Figure 5.21 (bottom) shows a modular syntactic extension for context-aware
aspects with the definition of the putInCartInCtx application-specific restric-
tor. Interestingly, it is not necessary to redefine the syntax for parameters
and values in the new syntax extension definition (ActualCtx is visible from
EShopCtxAspect).

5.10 P E R F O R M A N C E

Deriving a production quality (i.e. efficient and with language-specific error
reporting) parser from a declarative, possibly ambiguous, syntax definition is
one of the open problems in research on parsing techniques. In particular,
the area of scannerless parsing is relatively new and the number of imple-
mentations is very limited (i.e. about 2). This work does not improve the
performance, error reporting or error recovery of these parsers in any way:
besides the arguments for a declarative specification of AspectJ, it only pro-
vides a strong motivation for continued research on unconventional parsing

Chapter 5. Syntax Definition for AspectJ 133



 0

 50

 100

 150

 200

 0  10000  20000  30000  40000  50000

pa
rs

e 
tim

e 
(m

ill
is

ec
on

ds
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0  10000  20000  30000  40000  50000

pa
rs

e 
tim

e 
(m

ill
is

ec
on

ds
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0  10000  20000  30000  40000  50000

pa
rs

e 
tim

e 
(m

ill
is

ec
on

ds
)

size of source file (bytes)

Figure 5.22 Benchmark of parsing Java source files. Top to bottom: sglr/ajc,
sglr/java, and abc
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Figure 5.23 Benchmark of parsing Java source files. Top to bottom: ANTLR, ajc,
and the trend lines of all the benchmarked parsers in a single graph
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techniques. Although our current objectives are not to replace every single
parser in a production compiler by a scannerless generalized LR parser, it is
good to get an impression of the current state of a scannerless generalized LR
parser compared to parsers used in existing compilers.

In order to evaluate the applicability of our approach beyond specification
purposes, we have performed some benchmarks to estimate the efficiency of
scannerless generalized LR parsing. It has been shown that although O(n3)
in the worst case (with n the length of the input), generalized LR performs
much better on grammars that are near-LR [Rekers 1992], and that the cost
of scannerless parsing is linear in the length of the input, although with an
important constant factor [Salomon & Cormack 1989]. There is little knowl-
edge of how the integration of scannerless and generalized LR parsing per-
forms. We hereby compare the cost of the SGLR parser with that of abc, ajc,
and ANTLR [Parr] (an LL(k) parser generator) when parsing both a massive
amount of Java code and the AspectJ testsuite of abc.

5.10.1 Benchmark Setup

The test machine is an Intel Pentium 4 3.2GHz CPU with 1GB memory, run-
ning SUSE 9.0. The abc, ajc, and ANTLR parsers use the Sun JDK 5.0. SGLR
3.15 is invoked with heuristic filters and cycle detection disabled. For all
parsers, we only measure the actual parse time: this includes the construction
of the parse tree, but no semantic analysis and I/O costs. In all benchmarks,
the same source file is parsed 15 times and the first 10 parses are ignored to
avoid start-up overhead (class loading and JIT compilation for Java, parse ta-
ble loading for SGLR). For ANTLR we use version 3.0b3 and a recent Java 1.5
grammar written by Terence Parr.

5.10.2 Benchmark Results

Figure 5.23 shows the results of the Java benchmark: parsing of the source
files of the Azureus Bittorrent client and Tomcat 5.5.12. This figure shows that
parsing with all parsers is linear in the size of the input, illustrated by the
trend lines (calculated using least-squares). SGLR parsing with the AspectJ
grammar is about 4% slower than parsing with the Java grammar. The con-
stant factor of parsing with abc is about 40% of the factor of SGLR. Clearly, the
performance of ajc is superior to all the other parsers. The performance of the
ANTLR Java parser is more or less between the abc and ajc parsers, but this
is a plain Java parser. The creation of ANTLR parsers has been heavily opti-
mized in this benchmark after noticing the substantial setup cost of ANTLR3

parsers. The absolute times are all fractions of second, which is only a very
small portion of the total amount of time required for compiling an AspectJ
program, since the most expensive tasks are in semantic analysis and actual
weaving of aspects.

Figure 5.24 shows the results for parsing aspect code from the testsuite
of abc. Note that the scales are different, since aspect sources are typically
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smaller. Again, the parse time is linear in the size of the input, but the con-
stant factor of abc is about 60% of the factor of SGLR. The performance of
SGLR compared to ajc has improved as well. For both Java parsers, parsing
source files close to 0 bytes is relatively expensive. The reason for this is JIT
compilation, which still introduces start-up overhead after parsing the same
file 10 times before the actual benchmark. At first, we ignored just the first
two parses, which had a dramatic impact on the performance. Overall, the
parse time is always smaller than 0.06 second, so the absolute differences are
extraordinarily small for these tiny source files. We would have to bench-
mark larger aspect sources (which do not exist yet) to get more insight in the
performance of parsing aspects and pointcuts.

As a matter of fact, a typical project consists of a lot of Java code with
a few AspectJ aspects, so the Java benchmark is particularly relevant. To
conclude, the absolute and relative performance of scannerless generalized
LR parsing is promising for the considered grammars (Java and AspectJ). The
fact that the parsers are implemented in Java versus C is not relevant, since
the most important question is whether SGLR is fast enough in absolute time.
Nevertheless, since there is virtually no competition in the area of scannerless
parsing at present, there is ample opportunity for research on making the
performance of scannerless parsing even more competitive.

5.10.3 Testing

The compatibility of the Ajc syntax definition is tested heavily by applying
the generated parser to all the valid source files of the testsuite of ajc 1.5.0.
Testing invalid sources requires the examination of the full ajc testsuite to
find out if tests should fail because of semantic or syntactic problems. This is
a considerable effort, but will be very useful future work. The results of the
testsuite are available from the web page mentioned in the introduction.

5.11 D I S C U S S I O N

5.11.1 Previous Work

Although SDF has a long history [Heering et al. 1989], a more recent redesign
and reimplementation as SDF2 [Visser 1997b, van den Brand et al. 2002] has
made the language available for use outside of the algebraic specification for-
malism ASF+SDF. This redesign introduced the combination of scannerless
and generalized LR parsing [Visser 1997a].

In [Bravenboer & Visser 2004 (Chapter 2)] we motivated the use of SGLR
for parsing embedded domain-specific languages. This method, called Meta-
Borg, focuses on creating new language combinations, where it is important to
support combinations of languages with a different lexical syntax. In [Braven-
boer et al. 2005 (Chapter 3)] we presented the introduction of concrete object
syntax for AspectJ in Java as a reimplementation of the code generation tool
Meta-AspectJ [Zook et al. 2004]. In that project, we used the AspectJ syntax
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Figure 5.24 Benchmark of parsing AspectJ source files. Top to bottom: ajc, abc,
sglr/ajc
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definition of this chapter, but the design and benefits of the grammar were
not discussed.

Compared to this earlier work, we have discussed the design of the syn-
tax definition of AspectJ, which poses a challenge to parser generators. We
discussed in detail how complex differences in lexical syntax of the involved
languages can concisely be defined in SDF, and how this is related to a state-
ful lexer. The syntax definition for AspectJ provides a compelling example of
the application of scannerless parsing to an existing language, where all of
the following features of SDF prove their value: modular syntax definition,
rejects for keywords, scannerless parsing, generalized LR parsing, parameter-
ized symbols, and parameterized modules. Grammar mixins are a surpris-
ingly useful application of parameterized modules and non-terminals. Also,
we presented a solution for implementing context-sensitive keywords in SDF.

5.11.2 Related Work

Using a scannerless parser for AspectJ has not been proposed or even men-
tioned before in the literature. Concerning AspectJ implementations, we have
discussed the abc and ajc scanners and parsers at length.

The advantage of separate scanners is their foundation on finite automata,
which allows fast implementations. However, this characteristic also implies
obliviousness to context, while processing languages such as AspectJ requires
introducing context-sensitivity into scanners. There are essentially two op-
tions to make scanners context-sensitive. First, the scanner may interact with
the parser to retrieve the context of a token. This is not very difficult to
implement in a handwritten parser, but parser generators based on this ap-
proach are rare, and as far as we know none have been used to parse AspectJ.
Blender [Begel & Graham 2004] uses GLR parsing with an incremental lexical
analyzer that is forked together with the LR parsers in the GLR algorithm.
A similar approach was also used by the implementation of SDF before the
introduction of scannerless parsing [Heering et al. 1989]. Second, lexical anal-
ysis may be extended with a rudimentary form of context-free parsing to
recognize the global structure of the source file while scanning by means of
lexical states, without interaction with the parser. This approach is used in the
abc scanner and parser for AspectJ.

DURA-LexYt [Blasband 2001] supports lexical analysis with multiple inter-
pretations of the input. As opposed to scannerless parsing, a separate scanner
with support for backtracking is used. In this way, choosing the correct lexical
interpretation can be controlled by the parser without the need for managing
lexical states in the scanner. DURA provides several levels of lexical back-
tracking to facilitate typical scenarios of tokenization (e.g. a single or multiple
divisions into tokens), whereas scannerless parsing requires this to defined
explicitly. Lexical backtracking can be used for context-sensitive lexical anal-
ysis, but does not facilitate context-specific reserved keywords. DURA-LexYt
does not support inherent ambiguities: the parser always returns a single
parse tree, which might also not be the one desired. More experience with
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lexical backtracking is required to get insight in the performance compared to
scannerless parsing.

JTS Bali [Batory et al. 1998] is a tool for generating parsers for extensions of
Java. It supports composition of lexical syntax based on heuristics such that
the best results are produced in the common cases. For example, keyword
rules are put before the more general rules, such as for identifiers. This means
that it cannot handle lexical state and it not suitable for defining AspectJ-like
extensions of Java.

Parsing techniques with higher-order (parameterization) features, such as
parser combinators in higher-order functional languages [Hutton 1992], allow
reuse and abstraction over grammars, but do not support unanticipated reuse
of a grammar. Grammar mixins, on the other hand, are modules based on
unparameterized grammars (e.g. Java) that make this grammar reusable and
allow unanticipated modification of the grammar in every context.

5.11.3 Future Work

Grammar Mixins

In this chapter we have applied grammar mixins and explained their func-
tionality only in an informal way. In future work, we plan to make the no-
tion of grammar mixins more formal. In particular, the semantics of mixin
composition of grammars that already use mixins itself needs to be defined
more precisely. Also, grammar mixins should be integrated in a syntax def-
inition formalism. Currently, an external tool is used to generate grammar
mixin modules, which is not desirable. Furthermore, a notion of interfaces for
grammar mixins would be useful to separate the implementation of a mixin
from its interface. Finally, multiple instantiations of a grammar mixin for a
relatively large language, such as Java or AspectJ has a major impact on the
performance of the parser generator, which could again be solved by integra-
tion of grammar mixins in the syntax definition formalism. Chapter 6 presents
a first ingredient of this solution: parse table composition. Parse table composition
enables separate compilation of grammars involved in a language conglom-
erate. The grammar of Java is compiled to a parse table component that can
be instantiated multiple times in an efficient way. In this way, we avoid the
application of the parser generator to all the separate instantiations.

Improvements to SDF and SGLR

As we have shown in this chapter, SDF provides a declarative approach to
solving complex parsing problems. Yet, the formalism and tools are not in
widespread use. What may be the reason for this (other than publicity) and
what improvements can be made?

Rule Syntax SDF’s reverse grammar production rules may make developers
accustomed to BNF style rules uncomfortable. It might make sense to provide
a version of SDF using such a conventional style.
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Performance The benchmarks showed that the performance of the SGLR
parser is a constant factor slower than the abc parser, which should be ac-
ceptable for use at least in research projects. However, there is good hope that
the performance of SGLR can be much improved. There are alternative GLR
implementations (e.g. [Aycock & Horspool 1999, McPeak & Necula 2004])
and alternative algorithms such as right-nulled GLR [Scott & Johnstone 2006]
with better performance than SGLR. However, these techniques have not yet
been extended to scannerless parsing, while scannerlessness is essential in our
syntax definition for AspectJ. Even after these techniques are adopted, there
remains a theoretical performance gap between GLR and LALR, since the
complexity of GLR depends on the grammar. Therefore, it would be useful to
develop profiling tools that help grammar developers to detect performance
bottlenecks in grammars.

Error Reporting The current error reporting of SGLR is rather Spartan; it
gives the line and column numbers where parsing fails. This may be im-
proved using a technique along the lines of the Merr tool that generates error
reporting for LR parsers from examples [Jeffery 2003]. This requires an adap-
tion of the techniques where the set of parsing states at the failure point is
interpreted.

Analyzing Ambiguities The disadvantage of LR-like parser generators is that
the grammar developer is confronted with shift-reduce and reduce-reduce
conflicts. However, this is also their advantage; the developer is forced to
develop an unambiguous grammar. When using GLR there is no need to
confront the developer, however, the conflicts are still there to inspect. It
would be useful to develop heuristics that can be used to inspect the conflicts
in the parse table and use these to point the developer to problematic parts in
the grammar.

Platform A more mundane, not so scientific reason for lack of adoption may
be the platform. The SDF parser generator and the SGLR parser are imple-
mented in C and the distribution is Unix/Linux style. Furthermore, parse
trees and abstract syntax trees are represented using ATerms, which requires
linking with the ATerm library. Retargeting the SDF/SGLR implementation
to other platforms, such as Java, may help adoption.

Applications of the AspectJ Syntax Definition

With respect to the AspectJ syntax definition itself, there are a number of
applications to consider.

AspectJ Specification For widespread acceptance of aspect-oriented languages,
a complete specification of the syntax and semantics of the language is im-
portant. In particular, concerns about modifying the semantics of the host
language could be reduced by at least having a complete specification of the
syntax of the language. If there is enough interest in the specification of the
syntax and semantics of the AspectJ language, then we would like to work
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with the AspectJ developers to make the current syntax definition even more
compatible with ajc and make it the basis of such a specification.

As one of the first applications, the abc team has used our syntax definition
of AspectJ in a definition of the semantics of static pointcuts, defined as a set
of rewrite rules from AspectJ pointcuts to Datalog [Avgustinov et al. 2007].

Connecting to the AspectBench Compiler Considering the extensibility goals
of abc, our modular and extensible definition of AspectJ would be most useful
as part of the front-end of abc. Also, we have shown that pseudo keywords
do not require a handwritten parser, so the abc compiler could be made more
compatible with syntax accepted by ajc.

Multi-language AOP We are currently working on integrating the MetaBorg
approach [Bravenboer & Visser 2004 (Chapter 2)] and the Reflex AOP kernel
project [Tanter & Noyé 2005] for multi-language AOP. The current AspectJ
syntax definition can be used to support AspectJ in Reflex, allowing AspectJ
extensions to be prototyped conveniently.

5.12 C O N C L U S I O N

We have presented the design of a modular syntax definition for the complete
syntax of AspectJ, i.e. integrating the formalization of the lexical and the
context-free syntax of the language. In addition, we have shown that scanner-
less parsing in combination with an expressive module system can elegantly
deal with the context-sensitive lexical syntax of AspectJ. The result is a syn-
tax definition that achieves a new level of extensibility for AspectJ, which is
useful for research on aspect-oriented programming extensions. The perfor-
mance of the scannerless generalized LR parser for this grammar turns out to
be linear with an acceptable constant factor, which opens up possibilities for
the integration of our solution in extensible compilers for AspectJ.

Furthermore, our work on syntax definition for AspectJ provides guide-
lines for approaching the current trend to design programming languages
that are in fact mixtures of various sublanguages, for example for the integra-
tion of search capabilities or concrete object syntax (e.g. LINQ, E4X, XQuery,
Cω). The convention of separating the parsing process into a scanner and a
parser does not apply to such languages, requiring language designers and
implementers to reconsider the parsing techniques to use.

With the syntax definition for AspectJ, we have shown that scannerless gen-
eralized LR parsing is not just useful for reverse engineering, meta program-
ming, interactive environments, language prototyping, and natural language
processing, but that scannerless generalized LR may at some point be used
in compilers for modern general-purpose languages. AspectJ makes a strong
case for the use of scannerless parsing to provide concise, declarative specifi-
cation and implementation of the next-generation of programming languages.

This result provides a strong motivation for addressing the barriers to a
wider adoption of scannerless generalized LR parsing that we observed in the
previous section.
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