
7
Precedence Rule Recovery and
Compatibility Checking

A B S T R A C T

A wide range of parser generators are used to generate parsers for program-
ming languages. The grammar formalisms that come with parser generators
provide different approaches for defining operator precedence. Some genera-
tors (e.g. YACC) support precedence declarations, others require the grammar
to be unambiguous, thus encoding the precedence rules. Even if the grammar
formalism provides precedence rules, a particular grammar might not use it.
The result is a collection of grammar variants implementing the same lan-
guage. For the C language, the GNU Compiler uses YACC with precedence
rules, the C-Transformers project uses SDF without priorities, while the SDF
library does use priorities. For PHP, Zend uses YACC with precedence rules,
whereas the PHP-front package uses SDF with priority and associativity dec-
larations.

The variance between grammars raises the question whether the prece-
dence rules of one grammar are compatible with those of another. This is
usually not obvious, since some languages have complex precedence rules.
Also, for some parser generators the semantics of precedence rules is defined
operationally, which makes it hard to reason about their effect on the de-
fined language. We present a method and tool for comparing the precedence
rules of different grammars and parser generators. Although it is undecidable
whether two grammars define the same language, this tool provides support
for comparing and recovering precedence rules, which is especially useful for
reliable migration of a grammar from one grammar formalism to another. We
evaluate our method by the application to non-trivial mainstream program-
ming languages, such as PHP and C.

7.1 I N T R O D U C T I O N

Defining the syntax of a programming language using a context-free gram-
mar is one of the most established practices in the software industry and
computer science. For various reasons a wide range of parser generators are
used to generate parsers from context-free grammars. For almost every main-
stream programming language there exists a series of parser generators, not
only featuring different parsing algorithms, but also different grammar for-
malisms. These grammar formalisms often provide methods for declaring
the precedence of operators, since the notions of priority and associativity are
pervasive in the definition of the syntax of programming languages.

183

As early as 1975 Aho and Johnson recognized [Aho et al. 1975] that for
many languages the most natural grammar is not accepted by the parser gen-
erators that are used in practice, since the grammar does not fall in the class of
context-free grammars for which the parser generator can produce an efficient
parser. Aho and Johnson proposed to define the syntax of a programming lan-
guages as an ambiguous grammar combined with disambiguation rules that
tell the parser how to resolve a parsing action conflict, a method that was im-
plemented in the now still dominant YACC parser generator [Johnson 1975].
Unfortunately, most of the work on separate precedence declarations has been
guided by the underlying parsing technique and not by an analysis of the
requirements and fundamentals of precedence declarations. Indeed, parser
generators only support precedence rules that can efficiently be implemented
in the parser. This is understandable from a practical point of view, yet the
result is that little is known about the actual requirements for separate prece-
dence declarations. Indeed, the semantics of separate precedence declarations
is apparently so ill-defined that it is still not used in language specifications.
Rather, language specifications prefer to encode precedence rules in the pro-
ductions of the grammar. Sadly, it is difficult to disagree with this approach,
since an encoding in productions is still the most precise, formal, and parsing
technology independent way of defining precedences!

In this chapter, we argue that precedence rules need to be liberated from
the idiosyncrasies of specific parser generators. The reasons for this are
closely related to the efforts to work towards an engineering discipline for
grammarware [Klint et al. 2005, Lämmel & Verhoef 2001, Sellink & Verhoef
2000, Lämmel 2001a]. Liberating grammars from concrete parser generators
is not a new idea [Kort et al. 2002], however precedence rules have never been
studied fundamentally outside of the context of specific parsing technologies
or parser generators. Indeed, there is currently, for example, no solid method-
ology to

• recover precedence rules from ‘legacy’ grammar formalisms. For exam-
ple, for PHP there is no language specification, only a YACC grammar.
Due to the conflict resolution semantics of YACC precedence declara-
tions, the exact precedence rules of PHP are currently very difficult to
determine.

• compare the precedence rules of two grammars, whether they are de-
fined in the same grammar formalism or not. For example, for the C
language, the GNU Compiler uses YACC with precedence rules, the C-
Transformers project [Borghi et al. 2006] uses SDF [Visser 1997b] without
priorities, while the SDF library does use priorities. For PHP, Zend uses
YACC with precedence rules, whereas PHP-front uses SDF with prior-
ity and associativity declarations. However, there is no way to check
that the precedence rules of one grammar are compatible with those of
another.

• reliably migrate a grammar from one grammar formalism to another in-
cluding its precedence rules. This does not necessarily have to be done

184

completely automatic, but at least there can be support for recovering
precedence rules and generating precedence declarations in the new for-
malism.

In this chapter we present a method and its implementation for recovering
precedence rules from grammars. Our method is based on a core formalism
for defining precedence rules, which is independent of specific parser gener-
ators. Based on this formalism and the recovery of precedence rules, we can
compare precedence rules of different grammars, defined in different gram-
mar formalism, and using different precedence declaration mechanisms. We
have implemented support for recovering precedence rules from YACC [John-
son 1975] and SDF [Heering et al. 1989, Visser 1997b] (parser generators using
different parsing algorithms) and present the details of an algorithm to check
precedence rules against LR parsers.

Although it is in general undecidable whether two grammars define the
same language, this tool provides support for comparing and recovering prece-
dence rules, which is especially useful for reliable migration of a grammar
from one grammar formalism to another. Also, the method can be used to an-
alyze the precedence rules of a language, for example to determine if they can
be defined using a certain grammar formalism specific precedence declara-
tion mechanism. We evaluate our method by the application to the non-trivial
mainstream programming languages C and PHP. For both languages we com-
pare the precedence rules of three grammars defined in SDF or YACC. The
evaluation was most successful and revealed several differences and bugs in
the precedence rules of the grammars. The YACC and SDF implementations
of the method that we present are implemented in Stratego/XT [Visser 2004]
and available as open source software as part of the Stratego/XT Grammar
Engineering Tools1.

Contributions The contributions of this chapter are:

• A core formalism for precedence rules.

• A novel method for recovering precedence rules from grammars

• A method for checking the compatibility of precedence rules across
grammars

• Implementations of the recovery method for YACC and SDF and an
evaluation for non-trivial programming languages C and PHP.

Organization In Section 7.2 we introduce notations for context-free gram-
mars and tree patterns. In Section 7.3 we introduce a running example and
explain the precedence mechanisms of YACC and SDF. Section 7.4 is the body
of the chapter, where we present our precedence rule recovery method. Sec-
tion 7.5 discusses compatibility checking. In Section 7.6 we present our eval-
uation, and we conclude with a discussion of related work.

1http://www.strategoxt.org/GrammarEngineeringTools

Chapter 7. Precedence Rule Recovery 185

http://www.strategoxt.org/GrammarEngineeringTools

7.2 G R A M M A R S A N D T R E E PAT T E R N S

In this section we define the notions and notations for context-free grammars
and tree patterns as we will use them in this chapter.

7.2.1 Context-Free Grammars

A context-free grammar G is a tuple (Σ, N, P), with Σ a set of terminals, N a set
of non-terminals, and P a set of productions of the form A→ α, where we use
the following notation: V for N ∪Σ; A, B, C for variables ranging over N; X, Y, Z
for variables ranging over V; a, b for variables ranging over Σ; v, w, x for vari-
ables ranging over Σ∗; and α, β, γ for variables ranging over V∗. Context-free
grammars are usually written in some concrete grammar formalism. Fig-
ure 7.1 gives examples of grammars for the same language in different gram-
mar formalisms. The underlying structure is that of context-free grammars
just defined. The augmentation of grammars with precedence mechanisms
will be discussed in the next section.

7.2.2 Parse Trees

The family of valid parse trees TG over a grammar G is a mapping from V to
a set of trees, and is defined inductively as follows:

• if a is a terminal symbol, then a ∈ TG(a)

• if A0 → X1...Xn is a production in G, and ti ∈ TG(Xi) for 1 ≤ i ≤ n, then
〈A0 → t1...tn〉 ∈ TG(A0).

For example, the tree 〈E → 〈E → 〈T → 〈F → NUM〉〉〉+ 〈T → 〈F → NUM〉〉〉 is a
parse tree for the addition of two numbers according to the left-most grammar
in Figure 7.1.

7.2.3 Parse Tree Patterns

The family TPG of parse tree patterns (or tree patterns for short) over a grammar
G, is a mapping from grammar symbols in V to sets of parse trees over G
extended with non-terminals as trees, which we define inductively as follows:

• if X is a terminal or non-terminal symbol in V, then X ∈ TPG(X)

• if A0 → X1...Xn is a production in G, and ti ∈ TPG(Xi) for 1 ≤ i ≤ n, then
〈A0 → t1...tn〉 ∈ TPG(A0).

A parse tree pattern p denotes a set of parse trees, namely the set obtained
by replacing each non-terminal A in p by the elements of TG(A). Basically, a
parse tree pattern corresponds to the derivation tree for a sentential form. For
example, the tree pattern 〈E → 〈E → 〈T → F〉〉+ T〉 denotes the set of trees for
summation expressions where the first summand is a ‘factor’. We denote a
tree pattern with root A ∈ N and yield α by 〈A{ α〉

186

%token NUM

E: E ’+’ T
| T
T: T ’*’ F
| F
F: NUM

%token NUM
%left ’+’
%left ’*’

E: NUM
| E ’+’ E
| E ’*’ E

context-free syntax
E "+" E -> E
E "*" E -> E
NUM -> E

context-free priorities
E "*" E -> E {left}

> E "+" E -> E {left}
lexical syntax
[0-9] -> NUM

context-free syntax
E "+" E -> E {left}
T -> E
T "*" T -> T {left}
F -> T
NUM -> F

lexical syntax
[0-9] -> NUM

Figure 7.1 Grammars for a small arithmetic expressions language. Left to right:
YACC using encoded precedence (YACC1), YACC using precedence declarations
(YACC2), SDF using precedence declarations (SDF1), SDF using a mixture of en-
coding and precedence declarations (SDF2).

We use the notation 〈A ∼ B → t∗〉 to denote an injection chain from a tree
pattern with root A to a node with non-terminal B and leaves t∗. Formally,
〈A ∼ B→ t∗〉 is the subset of TPG(A) such that

• if A → B is a production in G, and 〈B → t∗〉 ∈ TPG(B), then 〈A → 〈B →
t∗〉〉 ∈ 〈A ∼ B→ t∗〉

• if A → C is a production in G, and 〈C ∼ B → t∗〉 ∈ TPG(C), then 〈A →
〈C ∼ B→ t∗〉〉 ∈ 〈A ∼ B→ t∗〉

For example, the expression 〈E → 〈E ∼ F → NUM〉+ T〉 abbreviates the injec-
tion chain in the tree pattern 〈E→ 〈E→ 〈T → 〈F → NUM〉〉〉+ T〉.

Finally, to define the notion of precedence, we will need one-level tree patterns,
which we define as follows:

• if A→ αBγ and B→ β are productions, then 〈A→ α〈B→ β〉γ〉 ∈ TP1
G(A)

• if A → αBγ is a production and 〈B ∼ C → β〉 ∈ TPG(B) then 〈A → α〈B ∼
C → β〉γ〉 ∈ TP1

G(A)

That is, one-level tree patterns are productions with a single subtree, with
possibly an injection chain from the root production to the child production.
Observe that TP1

G(A) ⊆ TPG(A). The tree pattern 〈E → E + 〈T → T ∗ F〉〉 is
one-level, and so is 〈E → 〈E → 〈T → T ∗ F〉〉+ T〉. However, 〈E → 〈E → 〈T →
T ∗ F〉〉+ 〈T → T ∗ F〉〉 is not a one-level tree pattern, since it has two non-chain
subtrees.

7.3 P R E C E D E N C E M E C H A N I S M S

In this chapter we focus on two grammar formalisms, their parser generators,
and their precedence mechanisms. The first is YACC (Yet Another Compiler-
Compiler) and the second is SDF (Syntax Definition Formalism). The parser
targeted by the SDF parser generator has a different name: SGLR (Scannerless
Generalized LR). Considering the combination of SDF and YACC is interest-
ing for three reasons. First, the two grammar formalisms provide very dif-
ferent precedence declaration mechanisms. Second, the grammar formalisms

Chapter 7. Precedence Rule Recovery 187

are implemented using different parsing techniques. Third, the conversion
from YACC to SDF is a very common use case. We introduce the basics of the
YACC and SDF precedence declaration mechanisms with a few grammars for
a small arithmetic language, see Figure 7.1.

7.3.1 YACC

YACC [Johnson 1975] is the classic parser generator. It accepts grammars of
the LALR(1) class of context-free grammars with optionally additional disam-
biguation rules. For our YACC-based tools we use Bison, the GNU version
of YACC, however, we will refer to our use of Bison as YACC (on most sys-
tems yacc is actually an alias of bison). The first and the second grammar
of Figure 7.1 are YACC grammars. The first grammar encodes the prece-
dence rules of the arithmetic language in the productions of the grammar.
The operators + and * are left-associative, since the grammar does not al-
low an occurrence of + at the right-hand side of a +. The operator * takes
precedence over the operator +, since it is not possible at all to have a +

at left or right-hand side of a *. The second grammar uses separate YACC
precedence declarations [Aho et al. 1975]. Without disambiguation rules (and
implicit conflict resultion), this grammar is ambiguous, e.g 1 + 2 * 3 has
two different parse trees: 〈E → 〈E → 〈E → 1〉 + 〈E → 2〉〉 ∗ 〈E → 3〉〉 and
〈E→ 〈E→ 1〉+ 〈E→ 〈E→ 2〉 ∗ 〈E→ 3〉〉〉 are both elements of TG(E).

As disambiguation rules, YACC allows declarations of the precedence of
operators, which can be %left, %right, or %nonassoc. After the associativity
comes a list of tokens. All tokens on the same line have the same precedence.
The relative precedence of the operators is defined by the order of the prece-
dence declarations. The operators in the first precedence declaration have
lower precedence than the next. The semantics of the precedence declarations
of YACC are defined in terms of parser generation. YACC produces an LALR
parse table in which the action has to be deterministic for each state and looka-
head. If there are multiple possible actions, then this results in shift/reduce
or reduce/reduce conflicts. The precedence declarations are used by YACC to
select the appropriate action if there is a conflict between two actions. If there
is no precedence declaration for the involved tokens, then YACC will resolve
the conflict by preferring a shift over a reduce. For a reduce/reduce conflict,
YACC resolves the conflict by selecting the reduce of the first production in
the input grammar. Later we will see in more detail what the consequence of
this is for the precedence rules.

The main weakness of precedence declarations of YACC is that it is not
really a precedence declaration mechanism, i.e. YACC has no notion of prece-
dence of operators. Precedence declarations are a mechanism to resolve con-
flicts in the parse table, which can be used to implement operator precedence.
Unfortunately, this requires understanding of LALR parsing and the way
YACC generates a parser.

188

7.3.2 SDF

SDF [Heering et al. 1989, Visser 1997b] is a feature rich grammar formalism
that integrates lexical and context-free syntax. SDF supports arbitrary context-
free grammars, so grammars are not restricted to subclasses of context-free
grammar, such as LL or LALR. The SDF parser generator generates a parse
table for a scannerless generalized LR parser. For disambiguation, SDF sup-
ports various disambiguation filters [Visser 1997b, van den Brand et al. 2002],
some of which are used to define precedence rules. The third grammar of Fig-
ure 7.1 uses the precedence declarations of SDF2. Similar to the second YACC
grammar, the productions of this grammar define an ambiguous language. A
separate definition of priorities is used to define that * takes precedence over +.
Also, both operators are defined to be left associative by using the associativ-
ity attribute left.

The semantic of SDF priorities is well-defined in terms of the grammar, as
opposed to operationally in the parser generator. SDF applies the transitive
closure to the declared priority relation over productions (which introduces
some limitations). Priority declarations generate a set conflicts(G) of tree pat-
terns of the form 〈A → α〈B → β〉γ〉. Note that this pattern has the same
form as patterns from the set of one-level tree patterns, excluding injection
chains. If A → αBγ > B → β is in the closure of the priority relation, then
〈A → α〈B → β〉γ〉 ∈ conflicts(G). The generated parser will never create a parse
tree that matches one of the tree patterns in conflicts(G).

The fourth grammar of Figure 7.1 illustrates that encoding precedence in
productions is possible in all grammar formalisms, even if they provide sep-
arate precedence declarations. To make the example a bit more interesting,
this grammar defines the priority of operators in productions, but uses asso-
ciativity definitions for individual operators.

7.4 P R E C E D E N C E R U L E R E C O V E RY

In previous sections, we have argued that there is a need for methods and
tools for determining the precedence rules of a grammar. In this section,
we present such a method for recovering the precedence rules as encoded in
productions or defined using separate precedence declarations.

7.4.1 A Core Formalism for Precedence Rules

The recovered precedence rules need to be expressed in a certain formalism.
To liberate the precedence rules from the idiosyncrasies of specific grammar
formalisms, we need a formalization that is independent of specific parsing
techniques. The formalism for precedence rules does not need to be concise
or notationally convenient. Rather, it serves as a core representation of prece-
dence rules of programming languages.

2SDF uses a reversed notation for production rules. We will only use this notation in verbatim
examples of SDF. All other productions are written in conventional A→ α notation.

Chapter 7. Precedence Rule Recovery 189

〈T → 〈T ∼ E→ E + T〉 * F〉
〈T → T * 〈F ∼ T → T * F〉〉
〈T → T * 〈F ∼ E→ E + T〉〉
〈E→ E + 〈T ∼ E→ E + T〉〉

〈E→ 〈E→ E + E〉 * E〉
〈E→ E * 〈E→ E * E〉〉
〈E→ E * 〈E→ E + E〉〉
〈E→ E + 〈E→ E + E〉〉

〈E→ 〈E→ E + E〉 * E〉
〈E→ E * 〈E→ E * E〉〉
〈E→ E * 〈E→ E + E〉〉
〈E→ E + 〈E→ E + E〉〉

〈T → 〈T ∼ E→ E+ E〉 *T〉
〈T → T * 〈T → T * T〉〉
〈T → T * 〈T ∼ E→ E +E〉〉
〈E→ E + 〈E→ E + E〉〉

Figure 7.2 Precedence rules for grammar of Figure 7.1. First row: YACC1, YACC2,
second row: SDF1, SDF2

Inspired by previous work on SDF conflict sets defined by priorities [Heer-
ing et al. 1989, Visser 1997b], we use parse tree patterns to define precedence
rules. Parse tree patterns denote a set of parse trees. Thus, a parse tree pat-
tern can be used to define a set of invalid parse trees. For example, for the
grammar SDF1 in Figure 7.1 the tree pattern 〈E → 〈E → E + E〉 * E〉 denotes a
set of invalid parse trees according to the precedence rules of this grammar.
However, the precedence rules for a grammar G cannot just be defined as a
subset of TPG . The reason for this is that for grammars that encode prece-
dence in productions, there will be no tree patterns that denote invalid parse
trees. Such grammars have a series of expression non-terminals that are only
allowed at specific places. For example, in grammar YACC1 of Figure 7.1, the
expression E is not allowed at the right-hand side of the operator + in the
production E → E + T. Nevertheless, we are interested in precedence rules
over such grammars. Therefore, we define the set of precedence rules for
G = (Σ, N, P) to be a subset of TP G−→(NE), where G−→(NE) is an extended context-

free grammar of the grammar G where NE ⊆ N and G−→(NE) = (Σ, N, P′) where
P′ = P ∪ {A → B|A ∈ NE, B ∈ NE, A , B}. For example, for the grammar YACC1
in Figure 7.1, YACC−−−→1({E, T, F}) contains the injections E→ F, T → E, F → E, and
F → T in addition to the productions of YACC1.

Based on this definition we can now introduce the precedence rules for
the grammars of Figure 7.1 that are presented in Figure 7.2. First, note that
an injection chain 〈A → α〈B ∼ C → β〉γ〉 is used when the symbol C of the
nested production is not equal to the symbol B at the place where the nested
production is used. Second, note that for the grammar YACC1 the tree pattern
〈T ∼ E → E + T〉 is not actually valid. This is exactly where YACC−−−→1 comes in,
since the injection T → E is present in YACC−−−→1.

There is no relation defined between the tree patterns that are members of
the precedence rule set, e.g we do not take the transitive closure of a prece-
dence relation over productions. If a precedence declaration for operators
needs to be transitively closed for a language, then this should be expressed
by having all combinations in the set. A precedence rule set is not by defini-

190

tion required to be minimal. This means that some tree patterns can define
precedence rules that are already implied by other tree patterns.

Precedence rules defined by tree patterns are closely related to the set of
conflicts conflicts(G) defined by SDF priority and associativity declarations.
One important difference is that the set of conflicts of SDF is transitively
closed, since it is defined by a priority relation that is a strict partial order-
ing between productions. Another difference is that we do not restrict the tree
patterns used in the precedence rule sets to trees of two productions. As men-
tioned before, we do not assume anything about (the feasibility of) a concise
notation for the set of tree patterns.

7.4.2 Tree Pattern Generation

We recover precedence rules from grammars by generating a set of tree pat-
terns involving expression productions and checking if a parse is possible
that will result in a parse tree matching the tree patterns. By default, we
generate the set of one-level tree patterns TP1

G−→
(NE) for a grammar G with

P restricted to P = {A → α ∈ P|A ∈ NE}, i.e a set of tree patterns involv-
ing two productions for all combinations of expression productions. For ex-
ample, the set of one-level tree patterns for two productions E → E + E and
E → & E is 〈E → & 〈E → & E〉〉, 〈E → 〈E → & E〉 + E〉 , 〈E → 〈E → E + E〉 + E〉 ,
〈E → & 〈E → E + E〉〉 , 〈E → E + 〈E → & E〉〉 , 〈E → E + 〈E → E + E〉〉. One-level
tree patterns are sufficient to express the precedence rules of most operator
languages. Indeed, our case studies in Section 7.6 are based on one-level tree
patterns. However, some languages require precedence rules that include 3

or more productions. For this, the precedence recovery tool supports config-
uration of the number of levels that is to be generated.

Next, the question is how to check if a grammar allows a parse that matches
a tree pattern. If the pattern is accepted, then there are valid parse trees for
this pattern. If not, then it denotes invalid parse trees and it will be an element
of the resulting precedence rule set. Clearly, checking tree patterns is parser
generator specific, since we need intimate knowledge about the semantics of
the grammar formalism that is used by the parser generator. Based on the
requirements for our case studies and our practical needs, we implemented
the validation of tree patterns for YACC and SDF. However, the algorithm and
the approach that is used can easily be ported to different (Generalized) LR
parser generators.

7.4.3 Precedence Rule Recovery: YACC

For YACC, the precedence rules are difficult to determine from the grammar
directly, since the semantics of precedence declarations in YACC is defined
operationally. The precedence declarations are used to resolve conflicts dur-
ing parser generation, which means that precedence rules are only applied
if there is actually a conflict. Also, YACC applies implicit conflict resolution
mechanisms, i.e. preference for a shift over a reduce, and preference for a

Chapter 7. Precedence Rule Recovery 191

reduce of the first production in the grammar. Furthermore, grammars can
encode the precedence rules in productions and combine this with prece-
dence declarations, an issue that is not YACC specific. Hence, checking the
grammar for possible matches of tree patterns is complex and requires intimate
knowledge of YACC parser generation and conflict resolution. A much more
general solution is to validate tree patterns against the parse table generated by
YACC. Of course, a parser generated by YACC can not parse tree patterns. To
check if a tree pattern is valid, we simulate the parsing of a sentential form
that results in a parse tree matching the tree pattern. If this is possible, then
the tree pattern is valid, otherwise it is invalid.

A shift reduce parser is a transition system with as configuration a stack
and an input string. The configuration is changed by shift and reduce actions.
A shift action moves a symbol from the input to the stack, which corresponds
to a step of one symbol in the right-hand sides of a set of productions that is
currently expected. A reduce removes a number of elements from the stack
and replaces them by a single element, which corresponds to the application
of a grammar production. In an LR parser [Knuth 1965], the information on
the actions to perform is stored in an action table. Both a shift and a reduce
introduce state transitions, which are recorded on the stack and are based
on information in the action and goto table. After popping elements from the
stack in a reduce, the goto entries of the state on top of the stack are consulted
to find the new state to push on the stack.

To recognize tree patterns, we change the input of the LR parser to a string
of tree patterns and symbols. The tree patterns are translated into LR actions
and all changes in the configuration of the parser are checked against the
actions that are allowed to derive a parse tree that matches the tree pattern.
Figure 7.3 lists the transition rules that implement the modified LR parser
for recognizing tree patterns. The configuration of the parser, denoted by
| stack | input |, is rewritten by the transition rules. The stack grows to the
right, the input grows to the left. The variable e ranges over all possible input
symbols, which is the set N ∪ Σ ∪ TP G−→

(NE) ∪ R(P) ∪ −→R (N). Hence, the input
of the parser consists of a sequence of non-terminals, terminals, tree patterns,
and two special elements for representing reduces. R(A → α) represents a
reduction of the production A→ α.

−→R (A) represents a reduction of any chain
production B → C, until B is A. The function head finds the first non-reduce
element in its list of arguments.

Equation R1 defines a shift of a terminal a. This definition is not different
from a shift in a normal LR parser. A terminal is removed from the input
and a new state is pushed on the stack. Equation R2 defines the unfolding of
a tree pattern 〈A → α〉. This transition rule does not exist for an LR parser,
since the normal input is a sequence of terminals. The unfolding of a tree
pattern involves adding α and a reduce of 〈A→ α〉 to the input. The reduction
is denoted by R(A → α). Equation R3 defines the unfolding of a tree pattern
〈A ∼ B→ α〉. After the unfolding of 〈B→ α〉, a reduce

−→R (A) for arbitrary chain
productions is inserted. Thanks to the unfolding of productions, the input of

192

action(sm, a) = shift(sm+1)
| s0 . . . sm | a, ei . . . en | ⇒ | s0 . . . sm, sm+1 | ei . . . en |

(R1)

| s0 . . . sm | 〈A→ α〉 . . . en | ⇒ | s0 . . . sm | α,R(A→ α) . . . en |
(R2)

| s0 . . . sm | 〈A ∼ B→ α〉 . . . en | ⇒ | s0 . . . sm | 〈B→ α〉,−→R (A) . . . en |
(R3)

goto(sm, A) = sm+1

| s0 . . . sm | A, ei . . . en | ⇒ | s0 . . . sm, sm+1 | ei . . . en |
(R4)

action(sm+k, head(ei . . . en)) = reduce(A→ X1 . . . Xk)
| s0 . . . sm . . . sm+k | R(A→ X1 . . . Xk), ei . . . en | ⇒ | s0 . . . sm | A, ei . . . en |

(R5)

action(sm+1, head(ei . . . en)) = reduce(A→ B)

| s0 . . . sm, sm+1 |
−→R (A), ei . . . en | ⇒ | s0 . . . sm | A, ei . . . en |

(R6)

action(sm+1, head(ei . . . en)) = reduce(B→ C), B , A

| s0 . . . sm, sm+1 |
−→R (A), ei . . . en | ⇒ | s0 . . . sm | B,

−→R (A), ei . . . en |
(R7)

Figure 7.3 Transition rules for checking tree patterns for a YACC parser

the system can now contain non-terminals. This is the reason for a separate
transition rule R4 for performing a goto, which is usually considered to be
a part of the reduce action. The goto transition rule removes a non-terminal
from the input and pushes a new state on the stack, determined by the goto
function. The reason why this works is that we can assume that the non-
terminal A is productive, which means that there will always be a production
for A that will finally reduce to state sm, which would lead to exactly the same
goto.

Equation R5 defines a reduce action. The transition system only allows
reduces if a reduce is explicitly identified in the input. This method of checked
reduces is used to enforce the structure of the tree pattern on the parser, i.e.
it is not possible to recognize the leafs of the tree pattern with a parse tree
that has a different internal structure. The definition of the reduce action
reuses the separate transition rule of goto by inserting a non-terminal in front
of the list. The equations R6 and R7 define the reduction of chain productions,
which is allowed if there is an

−→R (A) in front of the input. If the reduce is
applied for A → B then

−→R (A) is removed from the input and A is added. If
the chain production does not produce A, then more chain productions might
be necessary. Therefore, the

−→R (A) is preserved and B is pushed in front of the

Chapter 7. Precedence Rule Recovery 193

unfold
goto
shift

unfold
goto
shift
goto

reduce
goto

reduce
goto

accept

0	〈E→ E + 〈E→ E * E〉〉
0	E, +, 〈E→ E * E〉, R(+)
0, 3	+, 〈E→ E * E〉, R(+)
0, 3, 5	〈E→ E * E〉, R(+)
0, 3, 5	E, *, E, R(*), R(+)
0, 3, 5, 7	*, E, R(*), R(+)
0, 3, 5, 7, 6	E, R(*), R(+)
0, 3, 5, 7, 6, 8	R(*), R(+)
0, 3, 5	E, R(+)
0, 3, 5, 7	R(+)
0	E
3, 0	

unfold
unfold

goto
shift
goto
error

0	〈E→ 〈E→ E + E〉 * E〉
0	〈E→ E + E〉, *, E, R(*)
0	E, +, E, R(+), *, E, R(*)
0, 3	+, E, R(+), *, E, R(*)
0, 3, 5	E, R(+), *, E, R(*)
0, 3, 5, 7	R(+), *, E, R(*)

Figure 7.4 LR configuration sequences for a valid and invalid tree pattern

input to trigger a goto.
Using the extended LR parser that operates on tree patterns, the parsing

of an actual input of the form of a tree pattern is simulated in detail. To
illustrate the validation of tree patterns, Figure 7.4 shows the configuration of
a parser generated from grammar YACC2 (Figure 7.1) for every application of
a transition rule. The R(*) and R(+) inputs are abbreviations for the complete
productions of these operators. The tree pattern on the left is valid. The tree
pattern on the right is invalid, since in the last configuration the lookahead is
the terminal *. For this lookahead, a reduce of the + operator is not allowed,
since that would give the + operator precedence over *. Thus, parsing fails
and the tree pattern is invalid.

By working on the parse table generated by YACC, the recovery supports
all precedence rules of a YACC grammar: encoded in productions, defined
using precedence declarations, and even implicit conflict resolution. Indeed,
if we remove the precedence declarations from YACC2, then the precedence
rule recovery returns 〈E → 〈E → E * E〉 * E〉, 〈E → 〈E → E + E〉 * E〉, 〈E → 〈E →
E * E〉 + E〉, 〈E → 〈E → E + E〉 + E〉, which illustrates that YACC prefers a shift
over a reduce.

Bison has a detailed report function that provides information about the
generated LR parse table, item sets, shifts, gotos, reduces, and conflicts. We
parse this output to get a representation of the parse table. The tree pattern
parser is implemented in Stratego. The transition rules of Figure 7.3 directly
correspond to rewrite rules in the Stratego implementation, which are applied
using a rewriting strategy. The configurations of the parser can be inspected,
which was used to produce the examples of configuration sequences of Fig-
ure 7.4. The implementation of the transition system takes 55 lines of code.

7.4.4 Precedence Rule Recovery: SDF

For recovering precedence rules from SDF grammars, an analysis of the gram-
mar would be feasible, since the precedence declarations of SDF are not op-

194

erationally defined in terms of parser generation. Yet, supporting a mixture
of encoded and separately defined precedence declarations can still be rather
involved. Based on the success of the approach that we used for recovering
YACC precedence rules, we chose the same method for SDF grammars. Thus,
precedence rules are recovered by checking generated tree patterns up to a
certain level against the parse table generated from an SDF grammar.

We cannot reuse the transition system (a modified LR parser) that we de-
fined for checking tree patterns against YACC parse tables, since SDF is im-
plemented using a scannerless generalized LR parser, called SGLR. Because
the parser uses the generalized LR algorithm, there will be cases where mul-
tiple actions are possible in some configuration, for example a shift as well as
a reduce action. To handle the alternatives, the GLR configuration needs to be
forked, where in the end one of the alternatives has to succeed to make a tree
pattern valid. Furthermore, the scannerless generalized LR parser generator
uses a different method for applying precedence declarations to the parse ta-
ble. Whereas YACC uses precedence declarations to resolve conflicts between
shift and reduce actions, SDF effectively prunes the goto table of a parse table.
SGLR refines the goto table from gotos based on symbols to gotos based on
productions, i.e the goto table is now a table of states and productions instead
of states and symbols [Visser 1997b]. This slightly complicates the definition
of the transition system, since the system applies gotos that are not intro-
duced by a reduce, but by a non-terminal in the tree pattern. For this reason,
we distinguish such a goto from a goto induced by a reduce. In the case of a
goto caused by a non-terminal in the input, we consider all possible gotos for
this non-terminal. We determine the set of possible states where the parser
can goto from the current configuration and fork the GLR configuration to
check all alternatives. Our method supports ambiguous grammars, which is
illustrated by the case studies of Section 7.6, where two ambiguous grammars
for C are compared.

The implementation of the precedence recovery tool for SDF is a very basic
and somewhat naive GLR parser. However, for the size of tree patterns this
is not an issue at all. Again, the checker is implemented in Stratego using
rewrite rules that rewrite the GLR configuration.

7.5 P R E C E D E N C E C O M PAT I B I L I T Y

Comparing the language defined by two grammars is undecidable, but this
does not mean that nothing can be said about the compatibility of two gram-
mars. Static analysis tools, such as our precedence rule recovery tool, can be
used to extract information from different grammars and compare the results,
even if they are written in different grammar formalisms.

While the precedence rules are represented in a grammar formalism inde-
pendent formalism, this does not imply that precedence rules can be com-
pared directly in a useful way after recovering them from two different gram-
mars. Grammars usually have different naming conventions, different names
for lexical symbols, and often also have a different structure at some points.

Chapter 7. Precedence Rule Recovery 195

The recovered precedence rules can still be compared by first applying gram-
mar transformations to the precedence rules to achieve a common represen-
tation. After this, the comparison of precedence rules is a simple set compar-
ison.

7.5.1 Grammar Transformation

Precedence rule recovery usually results in rather big sets of tree patterns.
Trying to transform this huge set of tree patterns to a common representation
is usually not a good idea. To avoid working with this large set of precedences,
it is a good idea to first extract the productions from the precedence rules and
compare and transform the set of productions in order to find the required
set of grammar transformations that achieves a common representation. Also,
this is the most convenient way to identify language extensions that are only
present in one of the two grammars.

The relationship between two grammars is something that has to be custom
defined for a particular combination of grammars. Typically, one of the gram-
mar transformations that needs to be applied to the precedence rules is the
renaming of all expression symbols to a single expression symbol. Note that
it is essential that this renaming is applied to the precedence rules and not
to the original grammar, since that would most likely change the precedence
rules of the language or even make it impossible to generate a parser.

Similar to the renaming of expression symbols, injections caused by the
application of chain productions are no longer useful. To achieve a common
representation, all injection chain nodes 〈B ∼ C → β〉 are transformed to 〈C →
β〉

In the comparison of a YACC grammar and an SDF grammar a common
issue is that the YACC precedence rules use names for the operators of the
language (e.g. ANDAND instead of &&). This is usually a straightforward renam-
ing where the lexical specification can be consulted if necessary.

Another common difference between grammars are different factorizations.
For example, the first grammar might have a single assignment production
using a nonterminal AssignmentOperator and separate productions for the var-
ious assignment operators (e.g. =, *=, +=), whereas the second grammar might
have separate productions for all these assignments. Such structural differ-
ences between the grammars can be solved by inlining the alternatives of
the AssignmentOperator. The grammar transformations can be implemented
generically, which we have indeed done for our case studies.

7.6 E VA L U AT I O N

We have evaluated the method for precedence rule recovery and compatibility
checking by applying the implementation for YACC and SDF to a set of gram-
mars for the C and PHP languages. Both languages have a large number of
operators and non-obvious precedence rules. The size and complexity of the
languages makes this compatibility check a good benchmark for our method.

196

The case studies of C and PHP are motivated by practical problems we
experience. For C99, there are two high quality SDF grammars available.
Currently, it is difficult to choose between these grammars, since it is unclear
if both are standard compliant and if there are any differences in the language
they define. To compare the grammars, a method and tool for determining
the precedence rules is most useful. For PHP, we experienced the problem
that the precedence rules are not very well defined. PHP has many operators
(many more than C or Java) and the operators are also a bit unusual. For
example, PHP features a unary operator with very low precedence. There is
no specification of PHP, so the parser of the official PHP distribution defines
the syntax of PHP. This parser is generated from a YACC grammar, and as
we have argued the precedence rules are difficult to determine from a YACC
grammar without having intimate knowledge of the parser generator.

7.6.1 C99

We have compared three grammars for C99:

• The C compiler of the the GNU Compiler Collection uses a parser gen-
erated from a YACC grammar3. The YACC grammar uses a mixture of
precedence declarations and encoding of priorities in productions.

• The Transformers project provides a C99 SDF grammar [Borghi et al.
2006]. This grammar is a direct translation of the standard to SDF 4. The
grammar does not use SDF precedence declarations. Instead, it uses an
encoding of precedence in productions as specified by the standard. The
grammar is designed to be ambiguous where the C syntax is ambiguous.

• The SDF Library provides an ANSI C SDF grammar 5. Unlike C-Trans-
formers, this grammar uses SDF precedence declarations. The grammar
is designed to be ambiguous.

The precedence tools reported various differences between the grammars.
All the reports have been verified as being real differences, i.e there were no
false positives. Examples of the reported differences are:

〈E→ sizeof 〈E→ (TypeName) E〉〉
A cast as an argument of sizeof is forbidden in GCC and C-Transformers,
which is correct, but it is allowed in the SDF Library, which is a bug.

〈E→ ++ 〈E→ (TypeName) E〉〉 〈E→ -- 〈E→ (TypeName) E〉〉
GCC and SDF Library allow a cast as an argument of ++ and --. The C-
Transformers do not, which corresponds to the standard. The standard
defines ++ and -- separate from unary operators, while GCC and the
SDF Library ignore this difference.

3In GCC 4.1 the Bison-generated C parser has been replaced with a hand-written recursive-
decent parser. We use the Bison grammar for GCC 4.03.

4We used revision 1611 of the transformers-c-tools package. The one bug we found has been
fixed in revision 1613.

5We used revision 20649 of the sdf-library package for our evaluation.

Chapter 7. Precedence Rule Recovery 197

E→ sizeof(TypeName)
Though not a precedence problem, our tools reported this missing pro-
duction in the SDF library grammar. This means that some sizeof ex-
pressions that should be parsed ambiguously are currently unambigu-
ous.

〈E→ E ? E : 〈E→ E = E〉〉
This tree pattern of an assignment in the else branch of the condi-
tional is forbidden in GCC and the SDF Library, but is allowed in C-
Transformers. This is a bug in C-Transformers: the else branch of the
conditional operator uses the wrong non-terminal

〈E→ 〈E→ E ? E : E〉 = E〉 〈E→ 〈E→ (TypeName) E〉 = E〉
A conditional or a cast in the left-hand side of an assignment is allowed
by GCC and the SDF Library. For GCC this is a legacy feature that now
produces a semantic error. C-Transformers forbids this, which is correct.
The same issue holds for many more binary operators (||, &&, |, ˆ,

&, !=, ==, >=, <=, >, <, <<, >>, -, +, %, /, *). The C standard only
supports unary operators in the left-hand side of an assignment.

7.6.2 PHP 5

We compared three grammars for PHP:

• The official PHP distribution comes with a YACC grammar for PHP,
as part of the Zend engine. The grammar makes heavy use of YACC
precedence declarations 6.

• The open source PHP compiler PHC comes with a YACC grammar that
has been forked from the PHP distribution 7.

• PHP-front provides a syntax definition for PHP 4.0 and 5.0 in SDF.

For PHP YACC versus PHC YACC the precedence tool reported several
major bugs in the PHC YACC grammar: several operator precedences have
been inverted since the fork of the grammar. For example, in PHC the ||, OR,
and XOR operators had precedence over respectively &&, AND, and AND. This issue
was reported by our tools as a missing precedence rule 〈E→ 〈E→ E ||E〉 && E〉
in PHC. For each precedence rule in PHC that was not in PHP, there was
a corresponding rule in PHC that was not in PHP. For example, the rule
corresponding to the previous pattern is 〈E→ E || 〈E→ E && E〉〉.

For PHP versus the PHP-front SDF grammar we expected many differences
in the precedence rules. We were already aware of various issues in the prece-
dence of operators of the PHP-front grammar. Actually, the uncertainty about
the exact precedence rules of PHP was the primary motivation to develop this

6We used PHP 5.2.0 for our evaluation.
7We used PHC 0.1.7 for our evaluation. All bugs have been fixed by the developers of PHC

after our reports.

198

method of precedence rule recovery. One of the questions that we want to
answer in this project is whether the PHP precedence rules can actually be
expressed in SDF. The PHP operators are a bit unusual since PHP has very
weak as well as very strong binding unary operators. The transitive closure of
priorities in SDF results in various cases where we could not find a solution
by hand. In future work, we plan to analyse precedence rule sets to extract
characteristics and hopefully determine automatically whether these prece-
dence rules can be expressed using grammar formalism specific precedence
declaration mechanisms, in this case SDF priorities.

7.7 R E L AT E D W O R K

7.7.1 Grammar Engineering Vision

Several researchers have suggested that there is a strong need for proper foun-
dations and practices for grammar engineering [Lämmel & Verhoef 2001, Klint
et al. 2005, Sellink & Verhoef 2000, Lämmel 2001a]. In particular, [Klint et al.
2005] presents an extensive research agenda for grammar engineering. Our
method for recovery and compatibility checking of precedence rules is highly
related to several of the presented research challenges, such as maintain-
ing consistency between the incarnations of conceptually the same grammar.
Also, our precedence rules help to abstract from the idiosyncratic precedence
mechanisms provided by the various parser generators in use. Our prece-
dence rule recovery method is very useful in the semi-automatic grammar
recovery process [Lämmel & Verhoef 2001] from language references and ex-
isting compilers. In particular, more automation of grammar recovery is now
possible, since precedence declarations can be checked during the life-time of
a grammar.

7.7.2 Grammar Engineering Tools

The Grammar Deployment Kit (GDK) [Kort et al. 2002] targets the process of
producing a working parser from a specification. An important goal is parser
generator independence. The GDK provides tools to generate parser genera-
tor specific grammars from a universal grammar formalisms, called LLL. The
GDK does not provide more advanced grammar analysis tools, such as our
precedence recovery tool. Parser generator independence can be increased
by our representation of precedence rules, for which there is no comparable
concept available in the GDK. Sellink and Verhoef [Sellink & Verhoef 2000]
present the vision and implementation of a set of tools for grammar reengi-
neering, such as assessment (metrics) and conversion tools. BNF2SDF auto-
matically improves the resulting grammar by using EBNF list notations, but
does not consider precedence rules. Early versions of Stratego/XT provided
a similar tool yacc2sdf [de Jonge & Monajemi 2001]. Our precedence recov-
ery for YACC should be integrated in such a tool. Lämmel [Lämmel 2001a]
discusses a formal approach to grammar transformation based on a concise

Chapter 7. Precedence Rule Recovery 199

set of primitives and combinators for refactoring, extension, and restriction
of grammars. This work does not consider grammars that use separate dis-
ambiguation mechanisms. Also, the authors define some equivalency notions
for grammars. Comparing precedence rules is a very restricted form of struc-
tural equivalence, which is much easier than comparing grammars in general.
Schatborn [Schatborn 2005] presents a feature rich grammar transformation
language for SDF, providing modules, functions, variables, types, and pat-
terns to facilitate the development of grammar independent grammar trans-
formations, based on a detailed case study of the transformation from ANSI
C from YACC to SDF. Advanced grammar analysis tools, such as our prece-
dence recovery, would be valuable in combination with such a language.

7.7.3 Grammar Testing

Lämmel [Lämmel 2001b] contributes grammar coverage analysis techniques,
combined with test set generation, applied to grammar recovery. Checking
the correct implementation of precedences could be implemented using test
set generation accompanied by code coverage requirements. Our method just
exercises the parsing of operators using sentential forms, ignoring the actual
values of the expression. Also, tests need a description of the expected re-
sult, which is usually parser specific (not just parser generator specific, like
our method). Our method does not actually run the parser, which makes it
easier in practice to test expressions in isolation. In this way, we also have
very precise control over the correct behaviour of the parser, which makes a
comparison to the result of the parser unnecessary.

7.7.4 Pretty-Printing

The ASF+SDF Meta-Environment provides a tool restorebrackets that inserts
parenthesis where necessary according to priorities defined in a grammar.
Stratego/XT’s sdf2parenthesize is similar to the tool restorebrackets. How-
ever, both tools only support precedence rules defined using SDF priorities
and associativity. As a result, they fail to insert parenthesis for grammars that
encode precedence rules in grammar productions. Compared to this earlier
work, our new method identifies all conflicts between operators, not just those
that are specified using precedence declarations.

7.8 C O N C L U S I O N

We have presented a method for recovering precedence rules from grammars.
We have presented the algorithm for YACC and implemented the method in
tools for YACC and SDF. As far as we know, this is the first effort to develop
methods and tools for reliably assisting grammar developers with the recov-
ery of precedence rules, migration of grammars with precedence rules, and
compatibility checking of grammars. Although there are many open issues
and opportunities for further research, the evaluation of our current proto-

200

types has already clearly demonstrated the value of the tools that we have
presented.

A C K N O W L E D G M E N T S

This research was supported by the NWO/JACQUARD project TraCE: Transpar-
ent Configuration Environments (638.001.201). The development of the SDF gram-
mar for PHP was sponsored by the Google Summer of Code 2006. We thank Mark
van den Brand, Giorgios Robert Economopoulos, Jurgen Vinju, and the rest
of the SDF/SGLR team for their work on SDF. We thank Valentin David and
the Transformers team at the EPITA Research & Development Laboratory for
the SDF grammar for C99. We thank the anonymous reviewers of LDTA 2007

for providing useful feedback on an earlier version of this chapter.

Chapter 7. Precedence Rule Recovery 201

