
XML Processing and Term Rewriting

Martin Bravenboer

martin@cs.uu.nl

Institute of Information and Computing Sciences, University Utrecht, The Netherlands

xml processing and term rewriting – p.1/39

contents

monday

• relate xml and aterms
• impression of xml processing methods and languages
◦ mainstream oriented

- text/api based
- xpath, xslt, xquery

◦ research oriented

- xen, xduce, xtatic, cduce
- generic haskell

wednesday

• how to connect xml and aterm tools
• how to apply stratego for xml processing

xml processing and term rewriting – p.2/39

why discuss xml processing

• stratego: program transformation

• transform aterm representations of the source code of
programs

• why not structured data in general?

• that’s the topic of my master’s thesis:

connecting xml processing and term rewriting
using tree grammars

xml processing and term rewriting – p.3/39

xml and aterm concepts

xml processing and term rewriting – p.4/39

xml and aterm: concepts

• xml web-services
◦ independent software tools
◦ working together by exchanging xml

• stratego/xt
◦ component-based transformation systems
◦ exchanging program representations
◦ in the aterm format

exchange of structured, tree-like data between
software components

xml processing and term rewriting – p.5/39

xml and aterm: contribution

enables ‘generic’:
• tools and libraries

parsers, pretty-printers, well-formedness checkers,
validators, editors, browsers, . . .

• languages
schema, query, transformation, style, dedicated, general
purpose, . . .

xml syntax for tree-like data is
• platform,
• language,
• culture,
• and application independent.

xml processing and term rewriting – p.6/39

xml and aterm: similarities and differences

similarities
• xml element ∼ aterm application
• xml character data ∼ aterm string
• xml attribute ∼ aterm annotation

differences
• aterm has:
◦ explicit structure
◦ primitive data types
◦ structured annotations

• formalisms:
◦ aterm format ∼ tree languages
◦ xml ∼ hedge languages

xml processing and term rewriting – p.7/39

xml and aterm: concepts

• an xml document is not a tree
• an aterm is not a tree

⇒ generic syntax for tree-like data

xml processing and term rewriting – p.8/39

xml processing in practice

xml processing and term rewriting – p.9/39

text based xml processing

• xml in string literals
• xml in templates with embedded variables

sw.WriteLine("<?xml version=\"1.0\" encoding=\"Windows-1252\"?>");

sw.WriteLine("<configuration>");

sw.WriteLine("\t<appSettings>");

sw.WriteLine("\t\t<add key=\"Main.ConnectionString\" value=\""

+ m_sConnectionString + "\" />");

sw.WriteLine("\t</appSettings>");

sw.WriteLine("</configuration>");

sw.Close();

(fragment of LLBLGen)

xml processing and term rewriting – p.10/39

text based xml processing

• xml in string literals
• xml in templates with embedded variables

+
• xml in ‘concrete syntax’
• easy to start with

-
• no syntax checking: well formedness
• no transformation: requires interpretation

xml processing and term rewriting – p.11/39

api based

produce or consume xml with a dom, sax or pull api

Element report = new Element("exception-report");

Element topic = new Element("topic");

topic.setText(_exception.getTopic());

report.addContent(topic);

Element userinfo = new Element("user-info");

userinfo.setText(_message.getBackgroundValue().getContent());

report.addContent(userinfo);

createExceptionElement(report, _exception.getException());

StringWriter writer = new StringWriter();

XMLOutputter outputter = new XMLOutputter("\t", true);

outputter.output(report, writer);

xml processing and term rewriting – p.12/39

api based

produce or consume xml with a dom, sax or pull api

void serialize(Date time, ContentHandler h) {

_calendar.setTime(time);

intElement(h, "day-of-month", _calendar.get(Calendar.DAY_OF_MONTH));

intElement(h, "month", _calendar.get(Calendar.MONTH) + 1);

intElement(h, "year", _calendar.get(Calendar.YEAR));

}

void intElement(ContentHandler handler, String elem, int val) {

textElement(handler, elem, String.valueOf(val));

}

void textElement(ContentHandler handler, String elem, String text) {

startElement(handler, elem);

characters(handler, text);

endElement(handler, elem);

}

xml processing and term rewriting – p.13/39

api based

produce or consume xml with a dom, sax or pull api

+
• guarantees for well-formedness (not always)
• transformation possible if api allows

-
• verbose: does not scale to large fragments
• no xml specific language facilities

xml processing and term rewriting – p.14/39

how to improve?

• embed the xml syntax in general purpose language
◦ syntax for api calls or data
◦ not (yet) applied in practice
◦ tiger, java, c# with xml syntax

• xml data binding
◦ natural representation of xml data
◦ jaxb, castor, dtd2haskell
◦ applied in practice

• dedicated xml language
◦ built-in support for xml
◦ xpath, xslt, xquery, xslt, xduce, cduce
◦ applied in practice

xml processing and term rewriting – p.15/39

xpath: succesful mini language

• select nodes in an xml document
• no variable binding

+
• easy to use syntax, based on a set of axes
• can be reused in many languages

-
• verbose pattern matching

BinOp[PLUS and *[position() = 3 and name(.) = ’BinOp’]/PLUS]

• lack of variable binding sometimes annoying

xml processing and term rewriting – p.16/39

xslt: xml transformation language

• templates rewrite a node that matches an xpath
• recursively apply templates to nodes selected by and xpath
• stateless ‘functional’ language

<xsl:template match="category">

<h2><xsl:value-of select="@name"/></h2>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="link">

<xsl:value-of select="@name"/>

</xsl:template>

xml processing and term rewriting – p.17/39

xslt: xml transformation language

+
• easy to use if you know xpath
• most widely applied functional language!

-
• limited set of functions (use EXSLT)
• difficult to create abstraction
• transformation of ‘results’ not allowed (EXSLT, XSLT 2.0)
• abused to generate ‘plain text’

• compared to stratego
◦ no separation of rules and strategies
◦ no first class pattern matching
◦ no support for implementing full xml applications

xml processing and term rewriting – p.18/39

xquery: xml query langage

FLOWR expressions

• for - select nodes using xpath
• let - bind nodes to variables
• where - apply conditions
• order by - sort the results
• return - construct new nodes

• very easy to learn
• more declarative, not operational

like Java, XSLT, Stratego, Haskell

• less convenient for transformations (duh)

xml processing and term rewriting – p.19/39

xml processing in research

xml processing and term rewriting – p.20/39

research xml processing languages

focus of research:
• type systems
⇒ xduce, xtatic, xquery, xen, cduce

• performance
⇒ pattern matching compilation

limited research:
• generic programming
⇒ focus on getting a basic type system right

• traversals
⇒ xml data is not typical data in functional languages

• composition and interaction

xml processing and term rewriting – p.21/39

xen

• Microsoft Webdata, Research / Cambridge
• extension of C#: more general data model
◦ streams: T?, T !, T, T∗, T+
◦ tuples: sequence

◦ unions: choice

• xml is object literal syntax for this extended data model
• more operations: filter, apply to all

read the articles for more info:
• unifying tables, objects and documents
• programming with circles, triangles and rectangles

xml processing and term rewriting – p.22/39

generic haskell

• generic extension of haskell
• type-safe access to the structure of data
• xml programming is xml data binding to haskell data types
• subject of generic programming course

+
• amazing abstraction and reuse

-
• data structures must be known at compile time
⇒ generic programming, but not ‘any’ data

• no dedicated features for xml like data

more info: http://www.generic-haskell.org

xml processing and term rewriting – p.23/39

cduce

• designed at two universities in France
• typed, xml-oriented, functional language
• goal: develop more complex applications completely in

cduce

main areas of interest:
• type system: structural typing
◦ type: set of values
◦ t1 subtype t2 if e1 subset of e2

• type-based pattern matching
• generic programming

xml processing and term rewriting – p.24/39

cduce: type system

• universal type: Any

• native scalar types: Int (infinite), Char (Unicode), Atom

• constructed types
◦ product type: (t1, t2)

◦ open record type: {a1 = t1, . . . , an = tn}

◦ closed record type: {|a1 = t1, . . . , an = tn|}
◦ xml type: < t1 t2 > t3
◦ functional type: t1 → t2

• boolean operations on types
◦ union: t1|t2
◦ intersection: t1&t2
◦ difference: t1 \ t2

• singleton types: a scalar or constructed value is a type

xml processing and term rewriting – p.25/39

cduce: type system

• encoded types
◦ sequence: [v1, v2, . . . , vn] is (v1, (v2, (. . . , (vn, ‘nil))))
◦ strings are sequences of chars

• overloaded functions

let fun f(t1 → s1; . . . ; tn → sn)
| p1 → e1

| . . .

| pm → em

xml processing and term rewriting – p.26/39

cduce: patterns

• pattern-matching expression

match e with

| p1 → e1

| . . .

| pn → en

• let p = e1 in e2 is defined as match e1 with p → e2

• _ refers to Any

• matching must be exhaustive

• exceptions can be used to make ’dynamic type errors’
explicit in the code

(compare to Maybe and NullPointerException)

xml processing and term rewriting – p.27/39

cduce: pattern variables

• capture variables: bind values

• multiple occurrences of a variable: multiple values

• x & t1 adds type constraint t1 to capture variable x.

• p1 | p2 matches p1 or p2.

• x := c sets a default value for a capure variable.

• x :: R sequence capture variable for regular expression R.

• recursive patterns

◦ P where P = (_, P) | (x & Int, _)

◦ P where P = (x & Int, _) | (_, P)

◦ P where P = (x & Int, P) | (_, P) | (x := ‘nil)

xml processing and term rewriting – p.28/39

cduce: exceptions

• raise an exception:
raise e

• catch an exception:

try e with

| p1 → e1

| . . .

| pn → en

application: loading an xml file

let e : Exp =

match load_xml "program.xml" with

x & Exp -> x

| _ -> raise "program.xml is not of type Exp"

xml processing and term rewriting – p.29/39

cduce: map and (x)transform

currently cduce does not support parametric polymorphism

or in other words: you cannot define a foldr, map, etc.
(that preserves the type of the expression)

• map e with

p1 → e1 | . . . | pn → en

• transform e with

p1 → e1 | . . . | pn → en

∼ filter(. . .); concat

• xtransform e with

p1 → e1 | . . . | pn → en

∼ alltd(. . .)

xml processing and term rewriting – p.30/39

cduce: generic programming

• cduce provides access to the structure of an xml element

• function can accept Any type and constructed types
containing Any

• implement the operation for the possible constructed and
scalar types.

more info: http://www.cduce.org

xml processing and term rewriting – p.31/39

xml processing in stratego

xml processing and term rewriting – p.32/39

xml, terms and stratego: why?

exchange

→ from xml systems invoke term tools

← invoke xml tools from term systems

implement

more complex xml transformations using
◦ strategic rewriting
◦ dynamic rules
◦ general traversals
◦ concrete object syntax

xml processing and term rewriting – p.33/39

what representation to transform?

• every application has its own essence of xml

• different needs, different representations
◦ xml-doc
◦ xml-info
◦ implictly structured aterm
◦ explicitly structured aterm

• issues
◦ namespace notation
◦ character data constructs
◦ empty elements
◦ comments, processing instructions
◦ ‘meta’ and default attributes

xml processing and term rewriting – p.34/39

levels of representation

• xml-doc

actual syntax of an xml document

• xml-info

relevant informatie of an xml document

• implictly structured aterm

drop xml, no explicit structure

• explictly structured aterm

natural data of an xml document

⇒ what is natural?

xml processing and term rewriting – p.35/39

xml-doc in Stratego

• xml is a concrete syntax for xml-doc
• embed the xml syntax in stratego

meta programming with concrete object syntax

module tom

imports xml-doc options

strategies

main =

output-wrap(title)

title =

!%><title>Tom Bombadil</title><%

Meta([Syntax("Stratego-xml")])

xml processing and term rewriting – p.36/39

xml-info in Stratego

• information oriented transformations

• same syntax of xmlin stratego

• process xml-doc fragments to xml-info

• allows declaration of module namespaces

parse-stratego-xml-info -i select-bars.str

| process-stratego-xml-doc

| process-stratego-xml-info

| meta-explode

| stratego-desugar -o select-bars.rtree

xml processing and term rewriting – p.37/39

does this scale to real programs?

• XDoc – Rob Vermaas

◦ exendible documentation generator
◦ instantions for stratego, java, sdf

• XWeb – Niels Janssen

◦ transformation tool demo
◦ uses xml-info in Stratego

• Relation algebra to MathML – Martin Bravenboer

• Misc. small tools – Martin Bravenboer

◦ samples package
◦ daily build system overview
◦ xml-tools themselves!

xml processing and term rewriting – p.38/39

structured aterm in Stratego

• make structure explicit

• should be nothing special to tell about

• little experience; applied to
◦ java
◦ lecture results
◦ xml-rpc
◦ svn log

xml processing and term rewriting – p.39/39

	contents
	why discuss xml processing
	xml and aterm concepts
	xml and aterm: concepts
	xml and aterm: contribution
	xml and aterm: similarities and differences
	xml and aterm: concepts
	xml processing in practice
	text based xml processing
	text based xml processing
	api based
	api based
	api based
	how to improve?
	xpath: succesful mini language
	xslt: xml transformation language
	xslt: xml transformation language
	xquery: xml query langage
	xml processing in research
	research xml processing languages
	xen
	generic haskell
	cduce
	cduce: type system
	cduce: type system
	cduce: patterns
	cduce: pattern variables
	cduce: exceptions
	cduce: map and (x)transform
	cduce: generic programming
	xml processing in stratego
	xml, terms and stratego: why?
	what representation to transform?
	levels of representation
	xml-doc in Stratego
	xml-info in Stratego
	does this scale to real programs?
	structured aterm in Stratego

