XML Processing and Term Rewriting

Stratego/Xf

Martin Bravenboer

marti n@s. uu. nl

Institute of Information and Computing Sciences, University Utrecht, The Netherlands

|
xml processing and term rewriting — p.1/39

contents

monday

* relate xml and aterms
* impression of xml processing methods and languages
o mainstream oriented

- text/api based
- Xpath, xslt, xquery

° research oriented

- Xen, xduce, xtatic, cduce
- generic haskell

wednesday

* how to connect xml and aterm tools
* how to apply stratego for xml processing

|
xml processing and term rewriting — p.2/39

why discuss xml processing

* stratego: program transformation

* transform aterm representations of the source code of
programs

* why not structured data in general?

* that’s the topic of my master’s thesis:

connecting xml processing and term rewriting
using tree grammars

|
xml processing and term rewriting — p.3/39

Xxml and aterm concepts

|
xml processing and term rewriting — p.4/39

xml and aterm: concepts

* xml web-services
° Independent software tools
© working together by exchanging xml

® stratego/xt
© component-based transformation systems
© exchanging program representations
° In the aterm format

exchange of structured, tree-like data between
software components

|
xml processing and term rewriting — p.5/39

xml and aterm: contribution

enables ‘generic’:

® tools and libraries

parsers, pretty-printers, well-formedness checkers,
validators, editors, browsers, ...

* |languages
schema, query, transformation, style, dedicated, general
purpose, ...

xml syntax for tree-like data is
* platform,
* language,
* culture,
* and application independent.

|
xml processing and term rewriting — p.6/39

xml and aterm: similarities and differences

similarities
* xml element ~ aterm application
* xml character data ~ aterm string
* xml attribute ~ aterm annotation

differences

* aterm has:
o explicit structure
° primitive data types
© structured annotations

* formalisms:
o aterm format ~ tree languages
o xml ~ hedge languages

|
xml processing and term rewriting — p.7/39

xml and aterm: concepts

e an xml document is not a tree
e an aterm is not a tree

= generic syntax for tree-like data

<mul> mul (
<var>a</wvar> var (‘a’”)
<plus> , plus (
<int>3</int> int (3)
<var>b</wvar> , var (“b”)

</plus>
</mul>

|
xml processing and term rewriting — p.8/39

Xml processing in practice

|
xml processing and term rewriting — p.9/39

text based xml processing

* xml in string literals
* xml in templates with embedded variables

sw. WiteLine("<?xml version=\"1.0\" encodi ng=\"W ndows- 1252\ " ?>");
sw. WiteLine("<configuration>");
sw. Wi teLine("\t<appSettings>");
sw. WiteLine("\t\t<add key=\"Mi n. ConnectionString\" val ue=\""
+ m sConnectionString + "\" [/>");
sw. WiteLine("\t</appSettings>");
sw. WiteLine("</configuration>");
sw. Cl ose();

(fragment of LLBLGen)

|
xml processing and term rewriting — p.10/39

text based xml processing

* xml in string literals
* xml in templates with embedded variables

e xml in ‘concrete syntax’
* easy to start with

* no syntax checking: well formedness
* no transformation: requires interpretation

|
xml processing and term rewriting — p.11/39

api based

produce or consume xml with a dom, sax or pull api

El ement report = new El enent ("exception-report");

El ement topic = new El enent ("topic");
t opi c. set Text (_exception. get Topi c());
report.addContent (topic);

El ement userinfo = new El enent ("user-info");

useri nfo. set Text (_nessage. get Backgr oundVal ue(). get Content ());
report.addCont ent (useri nf o) ;

creat eExcepti onEl enent (report, _exception. getException());
StringWiter witer = new StringWiter();

XMLQut putter outputter = new XM_.Qutputter("\t", true);
out putter.output(report, witer);

|
xml processing and term rewriting — p.12/39

api based

produce or consume xml with a dom, sax or pull api

void serialize(Date tine, ContentHandler h) {
_calendar.setTinme(tine);
I nt El ement (h, "day-of-nonth", _cal endar. get(Cal endar. DAY _OF MONTH)) ;
i nt El enent (h, "nonth", _cal endar. get (Cal endar. MONTH) + 1);
| nt El ement (h, "year", _cal endar . get (Cal endar. YEAR)) ;

voi d i nt El enent (Cont ent Handl er handler, String elem int val) {
text El enent (handler, elem String.valueO (val));

}

voi d text El ement (Cont ent Handl er handler, String elem String text) {
start El enent (handl er, elem;
characters(handl er, text);
endEl enent (handl er, el enm;

|
xml processing and term rewriting — p.13/39

api based

produce or consume xml with a dom, sax or pull api

+

* guarantees for well-formedness (not always)
* transformation possible if api allows

* verbose: does not scale to large fragments
* no xml specific language facilities

xml processing and term rewriting — p.14/39

how to improve?

* embed the xml syntax in general purpose language
° syntax for api calls or data
° not (yet) applied in practice
° tiger, java, c# with xml syntax

* xml data binding
° natural representation of xml data
° jaxb, castor, dtd2haskell
© applied in practice

* dedicated xml language
° built-in support for xml
© xpath, xslt, xquery, xslt, xduce, cduce

o applied in practice
|

|
xml processing and term rewriting — p.15/39

Xpath: succesful mini language

* select nodes in an xml document
* no variable binding

* easy to use syntax, based on a set of axes
® can be reused in many languages

* verbose pattern matching
Bi nOp[PLUS and *[position() = 3 and nane(.) = 'BinQp’]/ PLUS]

* lack of variable binding sometimes annoying

|
xml processing and term rewriting — p.16/39

xslt: xml transformation language

* templates rewrite a node that matches an xpath
* recursively apply templates to nodes selected by and xpath
* stateless ‘functional’ language

<xsl :tenpl ate mat ch="cat egory" >
<l >
<h2><xsl : val ue- of sel ect =" @ane"/ ></ h2>
<xsl : appl y-tenpl at es/ ></ ul >
</[li>
</ xsl:tenpl at e>

<xsl| :tenplate match="11 nk" >
<[>

<xsl : val ue-of sel ect="@ane"/>
</ a>
</[li>

</ xsl:tenpl at e>
|

|
xml processing and term rewriting — p.17/39

xslt: xml transformation language

+

* easy to use if you know xpath
* most widely applied functional language!

* |limited set of functions (use EXSLT)

* difficult to create abstraction

* transformation of ‘results’ not allowed (EXSLT, XSLT 2.0)
* abused to generate ‘plain text’

* compared to stratego
© no separation of rules and strategies
° no first class pattern matching

© no support for implementing full xml applications
|

|
xml processing and term rewriting — p.18/39

xguery: xml query langage

FLOWR expressions

* for - select nodes using xpath
* |et - bind nodes to variables

* where - apply conditions

® order by - sort the results

® return - construct new nodes

* very easy to learn

* more declarative, not operational
like Java, XSLT, Stratego, Haskell

* less convenient for transformations (duh)

|
xml processing and term rewriting — p.19/39

Xml processing in research

|
xml processing and term rewriting — p.20/39

research xml processing languages

focus of research:

* type systems
= xduce, xtatic, xquery, xen, cduce

* performance
= pattern matching compilation

limited research:

® generic programming
= focus on getting a basic type system right

* traversals
= Xxml data is not typical data in functional languages

® composition and interaction

|
xml processing and term rewriting — p.21/39

Xen

* Microsoft Webdata, Research / Cambridge

* extension of C#. more general data model
° streams: 17, T, T, Tx, T+
° tuples: sequence
© unions: choice

* xml is object literal syntax for this extended data model
* more operations: filter, apply to all

read the articles for more info:

* unifying tables, objects and documents
* programming with circles, triangles and rectangles

|
xml processing and term rewriting — p.22/39

generic haskell

* generic extension of haskell

* type-safe access to the structure of data

* xml programming is xml data binding to haskell data types
* subject of generic programming course

* amazing abstraction and reuse

* data structures must be known at compile time
= generic programming, but not ‘any’ data

* no dedicated features for xml like data

more info: http://www.generic-haskell.org

|
xml processing and term rewriting — p.23/39

cduce

* designed at two universities in France
* typed, xml-oriented, functional language

* goal: develop more complex applications completely in
cduce

main areas of interest:

* type system: structural typing
° type: set of values
© t1 subtype t5 If ¢; subset of e,

* type-based pattern matching
® generic programming

|
xml processing and term rewriting — p.24/39

cduce: type system

* universal type: Any
* native scalar types: Int (infinite), Char (Unicode), Atom

® constructed types
° product type: (t1,t2)
° open record type: {a; =t1,...,a, =1tn}
° closed record type: {|a; =t1,...,a, = t,|}
o xmltype: < t1 to > t3
° functional type: t1 — to
* boolean operations on types
° union: ty|to
° Intersection: t1&ts
o difference: t1 \ to

* singleton types: a scalar or constructed value is a type

|
xml processing and term rewriting — p.25/39

cduce: type system

* encoded types
° sequence: [v1,va,...,v,] IS (v1, (v, (..., (v, Nil))))
© strings are sequences of chars

* overloaded functions
let fun f(t1 — s1; ... ;tn — Sp)
P1 — €1

Pm — €Em

|
xml processing and term rewriting — p.26/39

cduce: patterns

* pattern-matching expression

match e with
P1 — €1

Pn — €En
° let p = e1 in ey IS defined as match e; with p — ey

* refersto Any

* matching must be exhaustive

* exceptions can be used to make 'dynamic type errors’
explicit in the code
(compare to Maybe and NullPointerException)

|
xml processing and term rewriting — p.27/39

cduce: pattern variables

® capture variables: bind values

* multiple occurrences of a variable: multiple values

* r & ty adds type constraint ¢; to capture variable x.

® p1 | p2 matches p; or ps.

* r := c sets a default value for a capure variable.

°* r :: R seqguence capture variable for regular expression R.

® recursive patterns

°© Pwhere P=(_,P) | (x & Int,_)
°© Pwhere P=(x & Int,)| (_, P)
°© Pwhere P= (x & Int,P)| (_,P) | (x := ‘nil)

|
xml processing and term rewriting — p.28/39

cduce: exceptions

® raise an exception:
raise e

® catch an exception:

try e with
pP1 — €1

pn_>€n

application: loading an xml file

let e : Exp =
mat ch | oad xm "programxm " wth
X & Exp -> X

| -> raise "programxm is not of type Exp"

|
xml processing and term rewriting — p.29/39

cduce: map and (x)transform

currently cduce does not support parametric polymorphism

or in other words: you cannot define a foldr, map, etc.
(that preserves the type of the expression)

®* map e with
p1r — e1| ... |pn — en
* transform e with
pr — e1| ... |pn — en
~ filter(...);concat
* xtransform e with
p1 — e1| ... | pn — en
~ alltd(...)

|
xml processing and term rewriting — p.30/39

cduce: generic programming

® cduce provides access to the structure of an xml element

* function can accept Any type and constructed types
containing Any

* Implement the operation for the possible constructed and
scalar types.

more info: http://www.cduce.org

|
xml processing and term rewriting — p.31/39

Xml processing in stratego

|
xml processing and term rewriting — p.32/39

xml, terms and stratego: why?

exchange
— from xml systems invoke term tools
«— Invoke xml tools from term systems

Implement

more complex xml transformations using
© strategic rewriting

o dynamic rules

© general traversals

© concrete object syntax

xml processing and term rewriting — p.33/39

what representation to transform?

* every application has its own essence of xml

e different needs, different representations
o xml-doc
o xml-info
o implictly structured aterm
o explicitly structured aterm

® |ssues
© namespace notation
© character data constructs
°© empty elements
© comments, processing instructions

° ‘meta’ and default attributes
|

|
xml processing and term rewriting — p.34/39

levels of representation

* xmil-doc
actual syntax of an xml document

e xml-info
relevant informatie of an xml document

¢ implictly structured aterm
drop xml, no explicit structure

e explictly structured aterm
natural data of an xml document
= what Is natural?

xml processing and term rewriting — p.35/39

xml-doc in Stratego

* xml is a concrete syntax for xml-doc
* embed the xml syntax in stratego

meta programming with concrete object syntax

nodul e tom
| nports xml -doc options
strategies

main =
out put-wap(title)

title =
lO<tit]l e>Tom Bonbadi | </titl e><%

Met a([Syntax(" Stratego-xm")])

|
xml processing and term rewriting — p.36/39

xml-info in Stratego

* Information oriented transformations

* same syntax of xmlin stratego

* process xml-doc fragments to xml-info

* allows declaration of module namespaces

parse-stratego-xm-info -i select-bars.str

process-stratego-xnl - doc
process-stratego-xm -info

net a- expl ode

strat ego-desugar -0 select-bars.rtree

xml processing and term rewriting — p.37/39

does this scale to real programs?

® XDoC - Rob Vermaas
© exendible documentation generator
° Instantions for stratego, java, sdf

o X\Web - Niels Janssen
° transformation tool demo
© uses xml-info in Stratego

* Relation algebra to MathML - Martin Bravenboer

* Misc. small tools - Martin Bravenboer
© samples package
© dalily build system overview
° xml-tools themselves!

|
xml processing and term rewriting — p.38/39

structured aterm in Stratego

* make structure explicit
* should be nothing special to tell about

* little experience; applied to
° Java
° lecture results
° xml-rpc
° svn log

|
xml processing and term rewriting — p.39/39

	contents
	why discuss xml processing
	xml and aterm concepts
	xml and aterm: concepts
	xml and aterm: contribution
	xml and aterm: similarities and differences
	xml and aterm: concepts
	xml processing in practice
	text based xml processing
	text based xml processing
	api based
	api based
	api based
	how to improve?
	xpath: succesful mini language
	xslt: xml transformation language
	xslt: xml transformation language
	xquery: xml query langage
	xml processing in research
	research xml processing languages
	xen
	generic haskell
	cduce
	cduce: type system
	cduce: type system
	cduce: patterns
	cduce: pattern variables
	cduce: exceptions
	cduce: map and (x)transform
	cduce: generic programming
	xml processing in stratego
	xml, terms and stratego: why?
	what representation to transform?
	levels of representation
	xml-doc in Stratego
	xml-info in Stratego
	does this scale to real programs?
	structured aterm in Stratego

